Effects of Anisotropic Turbulence on Propagation Characteristics of Partially Coherent Beams with Spatially Varying Coherence
<p>Variation of spectral density <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mi>x</mi> </msub> <mo stretchy="false">(</mo> <mi>ξ</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> with <math display="inline"><semantics> <mi>ξ</mi> </semantics></math> at three different propagation distances in free space (<b>a</b>–<b>c</b>) and in the presence of turbulence (<b>d</b>–<b>f</b>). The solid lines are calculated from the approximate analytical formula shown in Equation (17). The circular dots are the numerical integration directly from Equation (15). It shows that irrespective of propagation in free space or in turbulence, the spectral density obtained from the approximate analytical formula Equation (17) is consistent with that obtained from direct numerical integration.</p> "> Figure 2
<p>Density plots of the spectral density of the NUC beam with <span class="html-italic">x</span><sub>0</sub> = <span class="html-italic">y</span><sub>0</sub> = 0 propagation through free space and in the presence of anisotropic turbulence at several different propagation distances.</p> "> Figure 3
<p>Density plots of spectral density of the NUC beam with <span class="html-italic">x</span><sub>0</sub> = <span class="html-italic">y</span><sub>0</sub> = 0.7<span class="html-italic">ω</span><sub>0</sub> in free space and in anisotropic turbulence at different propagation distances.</p> "> Figure 4
<p>Evolution of intensity maxima of the NUC beams (<span class="html-italic">x</span><sub>0</sub> = <span class="html-italic">y</span><sub>0</sub> = 0) as a function of propagation distance in the presence of anisotropic turbulence with different strengths of the turbulences, (<b>a</b>)<math display="inline"><semantics> <mrow> <mtext> </mtext> <msubsup> <mi>C</mi> <mi>n</mi> <mn>2</mn> </msubsup> </mrow> </semantics></math> = 0, (<b>b</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi>C</mi> <mi>n</mi> <mn>2</mn> </msubsup> <mo>=</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>17</mn> </mrow> </msup> <msup> <mi>m</mi> <mrow> <mo>−</mo> <mn>2</mn> <mo>/</mo> <mn>3</mn> </mrow> </msup> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi>C</mi> <mi>n</mi> <mn>2</mn> </msubsup> <mo>=</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>16</mn> </mrow> </msup> <msup> <mi>m</mi> <mrow> <mo>−</mo> <mn>2</mn> <mo>/</mo> <mn>3</mn> </mrow> </msup> </mrow> </semantics></math>, (<b>d</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi>C</mi> <mi>n</mi> <mn>2</mn> </msubsup> <mo>=</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>15</mn> </mrow> </msup> <msup> <mi>m</mi> <mrow> <mo>−</mo> <mn>2</mn> <mo>/</mo> <mn>3</mn> </mrow> </msup> </mrow> </semantics></math>. The anisotropic factors in (b–d) are <span class="html-italic">μ<sub>x</sub></span> = 2, <span class="html-italic">μ<sub>y</sub></span> = 1.</p> "> Figure 5
<p>Variation of the intensity maxima of the NUC beams (<span class="html-italic">x</span><sub>0</sub> = <span class="html-italic">y</span><sub>0</sub> = 0) with the propagation distance in free space in (<b>a</b>) and in anisotropic turbulence with different anisotropic factors in (<b>b</b>–<b>d</b>).</p> "> Figure 6
<p>3D-plots (black lines) of the evolution of the position of the intensity maxima during propagation in free space and in the presence of atmospheric turbulence. Red, green, and blue lines are the projections in the <span class="html-italic">ξ</span>-<span class="html-italic">η, ξ</span>-<span class="html-italic">z</span> and <span class="html-italic">η</span>-<span class="html-italic">z</span> planes, respectively. (<b>a</b>) free space; (<b>b</b>) <span class="html-italic">μ<sub>x</sub></span> = 1, <span class="html-italic">μ<sub>y</sub></span> = 1; (<b>c</b>) <span class="html-italic">μ<sub>x</sub></span> = 2, <span class="html-italic">μ<sub>y</sub></span> = 1; (<b>d</b>) <span class="html-italic">μ<sub>x</sub></span> = 3, <span class="html-italic">μ<sub>y</sub></span> = 1. The parameters <span class="html-italic">x</span><sub>0</sub> and <span class="html-italic">y</span><sub>0</sub>, used in the calculation, are <span class="html-italic">x</span><sub>0</sub> = <span class="html-italic">y</span><sub>0</sub> = 0.7<span class="html-italic">ω</span><sub>0</sub>.</p> "> Figure 7
<p>(<b>a</b>–<b>c</b>) Variation of the <span class="html-italic">PIB</span> of the NUC beam as a function of the propagation distance, (<b>a</b>) in free space; (<b>b</b>) in the presence of isotropic turbulence; (<b>c</b>) in the presence of anisotropic turbulence; (<b>d</b>) Variation of the parameter <span class="html-italic">P</span> against the propagation distance.</p> "> Figure 8
<p>Dependence of the parameter P on (<b>a</b>) the width of a receiver aperture, (<b>b</b>) the anisotropic factor <span class="html-italic">μ<sub>x</sub></span> with <span class="html-italic">μ<sub>y</sub></span> = 1, <span class="html-italic">D</span> = 0.02 m, (<b>c</b>) the strength of turbulence with <span class="html-italic">D</span> = 0.02 m.</p> ">
Abstract
:1. Introduction
2. Power Spectrum Density in Anisotropic Turbulence
3. Propagation Characteristics of the NUC Beams in Anisotropic Turbulence Along the Horizontal Links
Spectral Density of the NUC Beams Propagation through Anisotropic Turbulence
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Andrews, L.C.; Phillips, R.L. Laser Beam Propagation through Random Medium, 2nd ed.; SPIE Press: Bellingham, WA, USA, 2005; ISBN 9780819459480. [Google Scholar]
- Consortini, A.; Ronchi, L.; Stefanutti, L. Investigation of Atmospheric Turbulence by Narrow Laser Beams. Appl. Opt. 1970, 9, 2543–2547. [Google Scholar] [CrossRef] [PubMed]
- Dalaudier, F.; Sidi, C.; Crochet, M.; Vernin, J. Direct evidence of “sheets” in the atmospheric temperature field. J. Atmos. Sci. 1994, 51, 237–248. [Google Scholar] [CrossRef]
- Grechko, G.M.; Gurvich, A.S.; Kan, V.; Kireev, S.V.; Savchenko, S.A. Anisotropy of spatial structures in the middle atmosphere. Adv. Space Res. 1992, 12, 169–175. [Google Scholar] [CrossRef]
- Robert, C.; Conan, J.M.; Michau, V.; Renard, J.B.; Dalaudier, F. Retrieving parameters of the anisotropic refractive index fluctuations spectrum in the stratosphere from balloon-borne observations of stellar scintillation. J. Opt. Soc. Am. A 2008, 25, 379–393. [Google Scholar] [CrossRef]
- Antoshkin, L.V.; Botygina, N.N.; Emaleev, O.N.; Lavrinova, L.N.; Lukin, V.P.; Rostov, A.P.; Fortes, B.V.; Yankov, A.P. Investigation of turbulence spectrum anisotropy in the ground atmospheric layer, preliminary results. Atmos. Ocean. Opt. 1995, 8, 993–996. [Google Scholar]
- Manning, R.M. An anisotropic turbulence model for wave propagation near the surface of the Earth. IEEE Trans. Antennas Propag. 1986, AP-34, 258–261. [Google Scholar] [CrossRef]
- Biferale, L.; Procaccia, I. Anisotropic contribution to the statistics of the atmospheric boundary layer. Phys. Rep. 2005, 414, 43–164. [Google Scholar] [CrossRef]
- Belen’kii, M.S.; Barchers, J.D.; Karis, S.J.; Osmon, C.L.; Brown, J.M., II; Fugate, R.Q. Preliminary experimental evidence of anisotropy of turbulence and the effect of non-Kolmogorov turbulence on wavefront tilt statistics. Proc. SPIE 1999, 3762, 396–406. [Google Scholar] [CrossRef]
- Belen’kii, M.S.; Karis, S.J.; Osmon, C.L. Experimental evidence of the effects of non-Kolmogorov turbulence and anisotropy of turbulence. Proc. SPIE 1999, 3749, 50–51. [Google Scholar] [CrossRef]
- Gladkikh, V.A.; Nevzorova, I.V.; Odintsov, S.L.; Fedorov, V.A. Turbulence anisotropy in the near-ground atmospheric layer. Proc. SPIE 2014, 9292, 92925F-1. [Google Scholar] [CrossRef]
- Funes, G.; Olivares, F.; Weinberger, C.G.; Carrasco, Y.D.; Nunez, L.; Perez, D.G. Synthesis of anisotropic optical turbulence at the laboratory. Opt. Lett. 2016, 41, 5696–5699. [Google Scholar] [CrossRef] [PubMed]
- Bos, J.P.; Roggemann, M.C.; Gudimetla, V.S.R. Anisotropic non-Kolmogorov turbulence phase screens with variable orientation. Appl. Opt. 2015, 54, 2039–2045. [Google Scholar] [CrossRef] [PubMed]
- Wheelon, A.D. Electromagnetic Scintillation I. Geometric Optics; Cambridge University Press: Boulder, CO, USA, 2001; ISBN 9780521020121. [Google Scholar]
- Toselli, I. Introducing the concept of anisotropy at different scales for modeling optical turbulence. J. Opt. Soc. Am. A 2014, 31, 1868–1875. [Google Scholar] [CrossRef] [PubMed]
- Rao Gudimetla, V.S.; Holmes, R.B.; Smith, C.; Needham, G. Analytical expressions for the log-amplitude correlation function of a plane wave through anisotropic atmospheric refractive turbulence. J. Opt. Soc. Am. A 2012, 29, 832–841. [Google Scholar] [CrossRef] [PubMed]
- Rao Gudimetla, V.S.; Holmes, R.B.; Riker, J.F. Analytical expressions for the log-amplitude correlation function for plane wave propagation in anisotropic non-Kolmogorov refractive turbulence. J. Opt. Soc. Am. A 2012, 29, 2622–2627. [Google Scholar] [CrossRef] [PubMed]
- Rao Gudimetla, V.S.; Holmes, R.B.; Riker, J.F. Analytical expressions for the log-amplitude correlation function for spherical wave propagation through anisotropic non-Kolmogorov atmosphere. J. Opt. Soc. Am. A 2014, 31, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Cui, L. Analysis of temporal power spectra for optical waves propagating through weak anisotropic non-Kolmogorov turbulence. J. Opt. Soc. Am. A 2015, 32, 1199–1208. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Xue, B. Influence of asymmetry turbulence cells on the angle of arrival fluctuations of optical waves in anisotropic non-Kolmogorov turbulence. J. Opt. Soc. Am. A 2015, 32, 1691–1699. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Xue, B. Influence of anisotropic turbulence on the long-range imaging system by the MTF model. Infrared Phys. Technol. 2015, 72, 229–238. [Google Scholar] [CrossRef]
- Cui, L. Analysis of angle of arrival fluctuations for optical wave’s propagation through weak anisotropic non-Kolmogorov turbulence. Opt. Express 2015, 23, 6313–6325. [Google Scholar] [CrossRef] [PubMed]
- Toselli, I.; Agrawal, B.; Restaino, S. Light propagation through anisotropic turbulence. J. Opt. Soc. Am. A 2011, 28, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Toselli, I.; Korotkova, O. Spread and wander of a laser beam propagating through anisotropic turbulence. Proc. SPIE 2015, 9614, 96140B. [Google Scholar] [CrossRef]
- Toselli, I.; Korotkova, O. General scale-dependent anisotropic turbulence and its impact on free space optical communication system performance. J. Opt. Soc. Am. A 2015, 32, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Andrews, L.C.; Phillips, R.L.; Crabbs, R.; Leclerc, T. Deep turbulence propagation of a Gaussian-beam wave in anisotropic non-Kolmogorov turbulence. Proc. SPIE 2013, 8874, 887402. [Google Scholar] [CrossRef]
- Yao, M.; Toselli, I.; Korotkova, O. Propagation of electromagnetic stochastic beams in anisotropic turbulence. Opt. Express 2014, 22, 31608–31619. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, S.; Wang, H.; Cai, Y.; Li, Z. Second-order statistics of a radially polarized cosine-Gaussian correlated Schell-model beam in anisotropic turbulence. Opt. Express 2016, 24, 11627–11639. [Google Scholar] [CrossRef] [PubMed]
- Zhi, D.; Tao, R.; Zhou, P.; Ma, Y.; Wu, W.; Wang, X.; Si, L. Propagation of ring Airy Gaussian beams with optical vortices through anisotropic non-Kolmogorov turbulence. Opt. Commun. 2017, 387, 157–165. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Zhu, Y.; Chen, M. Effects of anisotropic turbulence on average polarizability of Gaussian Schell-model quantized beams through ocean link. Appl. Opt. 2016, 55, 5234–5239. [Google Scholar] [CrossRef] [PubMed]
- Gbur, G. Partially coherent beam propagation in atmospheric turbulence [Invited]. J. Opt. Soc. Am. A 2014, 31, 2038–2045. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Liu, X.; Cai, Y. Propagation of partially coherent beam in turbulent atmosphere: A Review. Prog. Electromagn. Res. 2015, 150, 123–143. [Google Scholar] [CrossRef]
- Wang, F.; Korotkova, O. Random optical beam propagation in anisotropic turbulence along horizontal links. Opt. Express 2016, 24, 24422–24434. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Toselli, I.; Li, J.; Korotkova, O. Measuring anisotropy ellipse of atmospheric turbulence by intensity correlations of laser light. Opt. Lett. 2017, 42, 1129–1132. [Google Scholar] [CrossRef] [PubMed]
- Lajunen, H.; Saastamoinen, T. Propagation characteristics of partially coherent beams with spatially varying correlations. Opt. Lett. 2011, 36, 4104–4106. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.; Korotkova, O. Nonuniformly correlated light beams in uniformly correlated media. Opt. Lett. 2012, 37, 3240–3242. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Gbur, G. Scintillation of nonuniformly correlated beams in atmospheric turbulence. Opt. Lett. 2013, 38, 1395–1397. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.; Korotkova, O. Electromagnetic nonuniformly correlated beams. J. Opt. Soc. Am. A 2012, 29, 2154–2158. [Google Scholar] [CrossRef] [PubMed]
- Mei, Z.; Tong, Z.; Korotkova, O. Electromagnetic non-uniformly correlated beams in turbulent atmosphere. Opt. Express 2012, 20, 26458–26463. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Tang, M.; Zhao, D. Propagation of electromagnetic non-uniformly correlated beams in the oceanic turbulence. Opt. Commun. 2014, 331, 1–5. [Google Scholar] [CrossRef]
- Tang, M.; Zhao, D. Effects of astigmatism on spectra and polarization of aberrant electromagnetic nonuniformly correlated beams in turbulent ocean. Appl. Opt. 2014, 53, 8111–8115. [Google Scholar] [CrossRef] [PubMed]
- Hyde, M.W., IV; Bose-Pillai, S. Generation of vector partially coherent optical sources using phase-only light modulators. Phys. Rev. Appl. 2016, 6, 064030. [Google Scholar] [CrossRef]
- Kiethe, J.; Heuer, A.; Jechow, A. Second-order coherence properties of amplified spontaneous emission from a high-power tapered superluminescent diode. Laser Phys. Lett. 2017, 14, 086201. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Gbur, G. Scintillation of pseudo-Bessel correlated beams in atmospheric turbulence. J. Opt. Soc. Am. A 2010, 27, 2621–2629. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dao, W.; Liang, C.; Wang, F.; Cai, Y.; Hoenders, B.J. Effects of Anisotropic Turbulence on Propagation Characteristics of Partially Coherent Beams with Spatially Varying Coherence. Appl. Sci. 2018, 8, 2025. https://doi.org/10.3390/app8112025
Dao W, Liang C, Wang F, Cai Y, Hoenders BJ. Effects of Anisotropic Turbulence on Propagation Characteristics of Partially Coherent Beams with Spatially Varying Coherence. Applied Sciences. 2018; 8(11):2025. https://doi.org/10.3390/app8112025
Chicago/Turabian StyleDao, Wentao, Chunhao Liang, Fei Wang, Yangjian Cai, and Bernhard J. Hoenders. 2018. "Effects of Anisotropic Turbulence on Propagation Characteristics of Partially Coherent Beams with Spatially Varying Coherence" Applied Sciences 8, no. 11: 2025. https://doi.org/10.3390/app8112025
APA StyleDao, W., Liang, C., Wang, F., Cai, Y., & Hoenders, B. J. (2018). Effects of Anisotropic Turbulence on Propagation Characteristics of Partially Coherent Beams with Spatially Varying Coherence. Applied Sciences, 8(11), 2025. https://doi.org/10.3390/app8112025