Propagation of Optical Coherence Vortex Lattices in Turbulent Atmosphere
<p>Spectral density distribution at several <span class="html-italic">z</span> of the optical coherence vortex lattices in turbulent atmosphere with <math display="inline"><semantics> <mrow> <mo> </mo> <mi>λ</mi> <mo>=</mo> <mn>532.8</mn> <mrow> <mtext> </mtext> <mi>nm</mi> </mrow> <mo>,</mo> <mtext> </mtext> <mi>M</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mtext> </mtext> <mi>l</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mtext> </mtext> <msub> <mi>ω</mi> <mn>0</mn> </msub> <mo>=</mo> <mtext> </mtext> <mn>1</mn> <mrow> <mtext> </mtext> <mi>mm</mi> </mrow> <mo>,</mo> <mo> </mo> <msub> <mi>δ</mi> <mrow> <mn>0</mn> <mo> </mo> </mrow> </msub> <mo>=</mo> <mn>3.4</mn> <mrow> <mtext> </mtext> <mi>mm</mi> </mrow> <mo>,</mo> <mo> </mo> <msubsup> <mi>C</mi> <mi>n</mi> <mn>2</mn> </msubsup> <mo>=</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>13</mn> </mrow> </msup> <msup> <mrow> <mrow> <mtext> </mtext> <mi mathvariant="normal">m</mi> </mrow> </mrow> <mrow> <mo>−</mo> <mn>2</mn> <mo>/</mo> <mn>3</mn> </mrow> </msup> <mo>,</mo> <mo> </mo> <mi>and</mi> <mo> </mo> <mi>d</mi> <mo>=</mo> <mn>0.3</mn> <mrow> <mtext> </mtext> <mi>mm</mi> </mrow> <mo>.</mo> </mrow> </semantics></math> (<b>a</b>) <span class="html-italic">z</span> = 0; (<b>b</b>) <span class="html-italic">z</span> = 1 m; (<b>c</b>) <span class="html-italic">z</span> = 2 m; (<b>d</b>) <span class="html-italic">z</span> = 3 m; (<b>e</b>) <span class="html-italic">z</span> = 10 m; (<b>f</b>) <span class="html-italic">z</span> = 500 m; (<b>g</b>) <span class="html-italic">z</span> = 5 km; (<b>h</b>) <span class="html-italic">z</span> = 20 km.</p> "> Figure 2
<p>Spectral density distribution of the optical coherence vortex lattices in turbulent atmosphere at <span class="html-italic">z</span> = 5 km for different <math display="inline"><semantics> <mi>d</mi> </semantics></math> <math display="inline"><semantics> <mrow> <mrow> <mi>with</mi> <mtext> </mtext> </mrow> <mi>λ</mi> <mo>=</mo> <mn>532.8</mn> <mrow> <mtext> </mtext> <mi>nm</mi> </mrow> <mo>,</mo> <mtext> </mtext> <mi>M</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mtext> </mtext> <mi>l</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mtext> </mtext> <msub> <mi>ω</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> <mrow> <mtext> </mtext> <mi>mm</mi> </mrow> <mo>,</mo> <mtext> </mtext> <msub> <mi>δ</mi> <mrow> <mn>0</mn> <mtext> </mtext> </mrow> </msub> <mo>=</mo> <mn>3.4</mn> <mrow> <mtext> </mtext> <mi>mm</mi> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> <mi>and</mi> <mtext> </mtext> </mrow> <msubsup> <mi>C</mi> <mi>n</mi> <mn>2</mn> </msubsup> <mo>=</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>13</mn> </mrow> </msup> <mo> </mo> <msup> <mi mathvariant="normal">m</mi> <mrow> <mo>−</mo> <mn>2</mn> <mo>/</mo> <mn>3</mn> </mrow> </msup> <mo>.</mo> </mrow> </semantics></math> (<b>a</b>) <span class="html-italic">d</span> = 0.2 mm; (<b>b</b>) <span class="html-italic">d</span> = 0.5 mm; (<b>c</b>) <span class="html-italic">d</span> = 0.8 mm; (<b>d</b>) <span class="html-italic">d</span> = 1 mm.</p> "> Figure 3
<p>Spectral density distribution of the optical coherence vortex lattices in turbulent atmosphere at <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>5</mn> <mrow> <mtext> </mtext> <mi>km</mi> <mtext> </mtext> </mrow> </mrow> </semantics></math>for different <math display="inline"><semantics> <mi>M</mi> </semantics></math> with <math display="inline"><semantics> <mrow> <mtext> </mtext> <mi>λ</mi> <mo>=</mo> <mn>532.8</mn> <mrow> <mtext> </mtext> <mi>nm</mi> </mrow> <mo>,</mo> <mtext> </mtext> <mi>l</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <msub> <mi>δ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.45</mn> <mrow> <mtext> </mtext> <mi>mm</mi> </mrow> <mo>,</mo> <mtext> </mtext> <mo> </mo> <msub> <mi>ω</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> <mrow> <mtext> </mtext> <mi>mm</mi> </mrow> <mo>,</mo> <mtext> </mtext> <mo> </mo> <msubsup> <mi>C</mi> <mrow> <mi>n</mi> <mo> </mo> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>13</mn> </mrow> </msup> <mo> </mo> <msup> <mi mathvariant="normal">m</mi> <mrow> <mo>−</mo> <mn>2</mn> <mo>/</mo> <mn>3</mn> </mrow> </msup> <mo>,</mo> <mrow> <mtext> </mtext> <mi>and</mi> <mtext> </mtext> </mrow> <mi>d</mi> <mo>=</mo> <mn>0.3</mn> <mrow> <mtext> </mtext> <mi>mm</mi> </mrow> <mo>.</mo> </mrow> </semantics></math> (<b>a</b>) <span class="html-italic">M</span> = 2; (<b>b</b>) <span class="html-italic">M</span> = 3; (<b>c</b>) <span class="html-italic">M</span> = 4; (<b>d</b>) <span class="html-italic">M</span> = 5.</p> "> Figure 4
<p>Spectral density distribution of the optical coherence vortex lattices in turbulent atmosphere at <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>500</mn> <mrow> <mtext> </mtext> <mi mathvariant="normal">m</mi> <mtext> </mtext> </mrow> </mrow> </semantics></math>for different <math display="inline"><semantics> <mi>l</mi> </semantics></math> with <math display="inline"><semantics> <mrow> <mtext> </mtext> <mi>λ</mi> <mo> </mo> <mo>=</mo> <mtext> </mtext> <mn>532.8</mn> <mrow> <mtext> </mtext> <mi>nm</mi> </mrow> <mo>,</mo> <mi>M</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <msub> <mi>δ</mi> <mn>0</mn> </msub> <mtext> </mtext> <mo>=</mo> <mn>0.7</mn> <mrow> <mtext> </mtext> <mi>mm</mi> </mrow> <mo>,</mo> <msub> <mi>ω</mi> <mn>0</mn> </msub> <mtext> </mtext> <mo>=</mo> <mn>1</mn> <mrow> <mtext> </mtext> <mi>mm</mi> </mrow> <mo>,</mo> <mtext> </mtext> <mo> </mo> <msubsup> <mi>C</mi> <mrow> <mi>n</mi> <mo> </mo> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>13</mn> </mrow> </msup> <mo> </mo> <msup> <mi mathvariant="normal">m</mi> <mrow> <mo>−</mo> <mn>2</mn> <mo>/</mo> <mn>3</mn> </mrow> </msup> <mo>,</mo> <mrow> <mtext> </mtext> <mi>and</mi> <mtext> </mtext> </mrow> <mi>d</mi> <mo>=</mo> <mn>1</mn> <mrow> <mtext> </mtext> <mi>mm</mi> </mrow> <mo>.</mo> </mrow> </semantics></math> (<b>a</b>) <span class="html-italic">M</span> = 2; (<b>b</b>) <span class="html-italic">M</span> = 3; (<b>c</b>) <span class="html-italic">M</span> = 4; (<b>d</b>) <span class="html-italic">M</span> = 5.</p> "> Figure 5
<p>Normalized <math display="inline"><semantics> <mrow> <msup> <mi>M</mi> <mn>2</mn> </msup> </mrow> </semantics></math>-factor of the optical coherence vortex lattices in turbulent atmosphere for several different topological charge <math display="inline"><semantics> <mi>l</mi> </semantics></math> and beam array order <math display="inline"><semantics> <mi>M</mi> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>532.8</mn> <mrow> <mtext> </mtext> <mi>nm</mi> </mrow> <mo>,</mo> <mtext> </mtext> <msubsup> <mi>C</mi> <mi>n</mi> <mn>2</mn> </msubsup> <mtext> </mtext> <mo>=</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>15</mn> </mrow> </msup> <mo> </mo> <msup> <mi mathvariant="normal">m</mi> <mrow> <mo>−</mo> <mn>2</mn> <mo>/</mo> <mn>3</mn> </mrow> </msup> <mo>,</mo> <mo> </mo> <mo> </mo> <mi>d</mi> <mo>=</mo> <mn>1</mn> <mrow> <mtext> </mtext> <mi>mm</mi> </mrow> <mo>,</mo> <mtext> </mtext> <mo> </mo> <msub> <mi>δ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>5</mn> <mrow> <mtext> </mtext> <mi>mm</mi> </mrow> <mo>,</mo> <mo> </mo> <mi>and</mi> <mo> </mo> <msub> <mi>ω</mi> <mrow> <mn>0</mn> <mo> </mo> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mrow> <mtext> </mtext> <mi>cm</mi> </mrow> <mo>.</mo> </mrow> </semantics></math> (<b>a</b>) <span class="html-italic">l</span> = 0, 2, 5 (<span class="html-italic">M</span> = 3); (<b>b</b>) <span class="html-italic">M</span> = 1, 2, 3, 5 (<span class="html-italic">l</span> = 2).</p> "> Figure 6
<p>Beam wander of the optical coherence vortex lattices in turbulent atmosphere for various different values of <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">δ</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, relative distance <math display="inline"><semantics> <mi>d</mi> </semantics></math>, topological charge <math display="inline"><semantics> <mrow> <mi>l</mi> <mo>,</mo> </mrow> </semantics></math> and beam array order <math display="inline"><semantics> <mi>M</mi> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>532.8</mn> <mrow> <mtext> </mtext> <mi>nm</mi> </mrow> <mo>,</mo> <mo> </mo> <mo> </mo> <msubsup> <mi>C</mi> <mi>n</mi> <mn>2</mn> </msubsup> <mo>=</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>15</mn> </mrow> </msup> <mo> </mo> <msup> <mrow> <mrow> <mtext> </mtext> <mi mathvariant="normal">m</mi> </mrow> </mrow> <mrow> <mo>−</mo> <mn>2</mn> <mo>/</mo> <mn>3</mn> </mrow> </msup> <mo>,</mo> <mrow> <mtext> </mtext> <mi>and</mi> </mrow> <mo> </mo> <msub> <mi>ω</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> <mrow> <mtext> </mtext> <mi>cm</mi> </mrow> <mo>.</mo> </mrow> </semantics></math> (<b>a</b>) <span class="html-italic">d</span> = 0.1 mm, 0.2 mm, 0.5 mm, 1 mm (<span class="html-italic">M</span> = 3, <span class="html-italic">l</span> = 2); (<b>b</b>)<math display="inline"><semantics> <mrow> <msub> <mrow> <mrow> <mtext> </mtext> <mi mathvariant="sans-serif">δ</mi> </mrow> </mrow> <mn>0</mn> </msub> </mrow> </semantics></math> = 0.1 mm, 0.2 mm, 0.5 mm, 5 mm (<span class="html-italic">M</span> = 3, <span class="html-italic">l</span> = 2); (<b>c</b>) <span class="html-italic">l</span> = 0, 1, 3, 6 (<span class="html-italic">M</span> = 3); (<b>d</b>) <span class="html-italic">M</span> = 1, 2, 3, 5 (<span class="html-italic">l</span> = 2).</p> ">
Abstract
:1. Introduction
2. Formulation of the Propagation of OCLVs in Turbulent Atmosphere
3. Numerical Results
3.1. Spectral Density Distribution
3.2. -Factor
3.3. Beam Wander
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ma, L.; Ponomarenko, S.A. Optical coherence gratings and lattices. Opt. Lett. 2014, 39, 6656–6659. [Google Scholar] [CrossRef] [PubMed]
- Ponomarenko, S.A. Complex Gaussian representation of statistical pulses. Opt. Express 2011, 19, 17086–17091. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Ponomarenko, S.A. Free-space propagation of optical coherence lattices and periodicity reciprocity. Opt. Express 2015, 23, 1848–1856. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ponomarenko, S.A.; Cai, Y. Experimental generation of optical coherence lattices. Appl. Phys. Lett. 2016, 109, 061107. [Google Scholar] [CrossRef]
- Liang, C.; Mi, C.; Wang, F.; Zhao, C.; Cai, Y.; Ponomarenko, S.A. Vector optical coherence lattices generating controllable far-field beam profiles. Opt. Express 2017, 25, 9872–9885. [Google Scholar] [CrossRef] [PubMed]
- Mei, Z.; Zhao, D.; Korotkova, O.; Mao, Y. Gaussian schell-model arrays. Opt. Lett. 2015, 40, 5662–5665. [Google Scholar] [CrossRef] [PubMed]
- Mei, Z.; Korotkova, O. Alternating series of cross-spectral densities. Opt. Lett. 2015, 40, 2473–2476. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Zhao, D. Optical coherence grids and their propagation characteristics. Opt. Express 2018, 26, 2168–2180. [Google Scholar] [CrossRef]
- Jaksch, D.; Bruder, C.; Cirac, J.I.; Gardiner, C.W.; Zoller, P. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 1998, 81, 3108–3111. [Google Scholar] [CrossRef]
- Ostrovskaya, E.; Kivshar, Y. Photonic crystals for matter waves: Bose-Einstein condensates in optical lattices. Opt. Express 2004, 12, 19–29. [Google Scholar] [CrossRef]
- Betzig, E. Excitation strategies for optical lattice microscopy. Opt. Express 2005, 13, 3021–3036. [Google Scholar] [CrossRef] [PubMed]
- Bloch, I. Ultracoldquantum gases in optical lattices. Nat. Phys. 2005, 1, 23–30. [Google Scholar] [CrossRef]
- Lu, W.; Liu, L.; Sun, J. Change in degree of coherence of partially coherent electromagnetic beams propagating through atmospheric turbulence. Opt. Commun. 2007, 271, 1–8. [Google Scholar] [CrossRef]
- Wang, F.; Cai, Y.; Eyyuboglu, H.T.; Baykal, Y. Partially coherent elegant Hermite-Gaussian beam in turbulent atmosphere. Appl. Phys. B 2011, 103, 461–469. [Google Scholar] [CrossRef]
- Gbur, G.; Wolf, E. Spreading of partially coherent beams in random media. J. Opt. Soc. Am. A 2002, 19, 1592–1598. [Google Scholar] [CrossRef]
- Yuan, Y.; Cai, Y.; Qu, J.; Eyyuboglu, H.T.; Baykal, Y.; Korotkova, O. M2-factor of coherent and partially coherent dark hollow beams propagating in turbulent atmosphere. Opt. Express 2009, 17, 17344–17356. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Cai, Y. Second-order statistics of a twisted Gaussian Schell-model beam in turbulent atmosphere. Opt. Express 2010, 18, 24661–24672. [Google Scholar] [CrossRef]
- Dan, Y.; Zhang, B. Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere. Opt. Express 2008, 16, 15563–15575. [Google Scholar] [CrossRef]
- Gbur, G.; Wolf, E. The rayleigh range of Gaussian Schell-model beams. J. Mod. Opt. 2001, 48, 1735–1741. [Google Scholar] [CrossRef]
- Wang, F.; Cai, Y.; Eyyuboglu, H.T.; Baykal, Y. Twist phase-induced reduction in scintillation of a partially coherent beam in turbulent atmosphere. Opt. Lett. 2012, 37, 184–186. [Google Scholar] [CrossRef]
- Baykal, Y.; Eyyuboglu, H.T.; Cai, Y. Scintillations of partially coherent multiple Gaussian beams in turbulence. Appl. Opt. 2009, 48, 1943–1954. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Liu, L.; Wang, F.; Chen, Y.; Cai, Y.; Qu, J.; Eyyuboğlu, H.T. Scintillation index of a multi-Gaussian Schell-model beam. Opt. Commun. 2013, 305, 57–65. [Google Scholar] [CrossRef]
- Liu, X.; Yu, J.; Cai, Y.; Ponomarenko, S.A. Propagation of optical coherence lattices in the turbulent atmosphere. Opt. Lett. 2016, 41, 4182–4185. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, F.; Zhao, C. Experimental demonstration of a Laguerre Gaussian correlated Schell-model vortex beam. Opt. Express 2014, 22, 5826–5838. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.; Lin, Z.; Chan, C.T. Theory of optical trapping by an optical vortex beam. Phys. Rev. Lett. 2010, 104, 103601. [Google Scholar] [CrossRef] [PubMed]
- Grier, D. A revolution in optical manipulation. Nature 2003, 424, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ma, H.; Zhang, H.; Tai, Y.; Li, H.; Tang, M.; Wang, J.; Tang, J.; Cai, Y. Close-packed optical vortex lattices with controllable structures. Opt. Express 2018, 26, 22965–22975. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Liu, D.; Zhou, Z.; Xu, H.; Qu, J.; Cai, Y. Optimization of the probability of orbital angular momentum for Laguerre-Gaussian beam in Kolmogorov and Non-Kolmogorov turbulence. Opt. Express 2018, 26, 21861–21871. [Google Scholar] [CrossRef]
- Gbur, G.; Tyson, R. Vortex beam propagation through atmospheric turbulence and topological charge conservation. J. Opt. Soc. Am. A 2008, 25, 225–230. [Google Scholar] [CrossRef]
- Gori, F.; Santarsiero, M.; Borghi, R.; Vicalvi, S. Partially coherent sources with helicoidal modes. J. Mod. Opt. 1998, 45, 539–554. [Google Scholar] [CrossRef]
- Liu, X.; Shen, Y.; Liu, L.; Wang, F.; Cai, Y. Experimental demonstration of vortex phase-induced reduction in scintillation of a partially coherent beam. Opt. Lett. 2013, 38, 5323–5326. [Google Scholar] [CrossRef] [PubMed]
- Bogatyryova, G.V.; Fel’de, C.V.; Polyanskii, P.V.; Ponomarenko, S.A.; Soskin, M.S.; Wolf, E. Partially coherent vortex beams with a separable phase. Opt. Lett. 2003, 28, 878–880. [Google Scholar] [CrossRef] [PubMed]
- Ponomarenko, S.A. A class of partially coherent beams carrying optical vortices. J. Opt. Soc. Am. A 2001, 18, 150–156. [Google Scholar] [CrossRef]
- Palacios, D.; Maleev, I.; Marathay, A.; Swartzlander, G.A. Spatial correlation singularity of a vortex field. Phys. Rev. Lett. 2004, 92, 143905. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Cai, Y.; Korotkova, O. Partially coherent standard and elegant Laguerre-Gaussian beams of all orders. Opt. Express 2009, 17, 22366–22379. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhu, S.; Cai, Y. Experimental study of the focusing properties of a Gaussian Schell-model vortex beam. Opt. Lett. 2011, 36, 3281–3283. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Dong, Y.; Wang, Y.; Wang, F.; Zhang, Y.; Cai, Y. Experimental generation of a partially coherent Laguerre-Gaussian beam. Appl. Phys. B 2012, 109, 345–349. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, F.; Dong, Y.; Han, Y.; Cai, Y. Effect of spatial coherence on determining the topological charge of a vortex beam. Appl. Phys. Lett. 2012, 101, 261104. [Google Scholar] [CrossRef]
- Perez-Garcia, B.; Yepiz, A.; Hernandez-Aranda, R.I.; Forbes, A.; Swartzlander, G.A. Digital generation of partially coherent vortex beams. Opt. Lett. 2016, 41, 3471–3474. [Google Scholar] [CrossRef]
- Guo, L.; Chen, Y.; Liu, X.; Liu, L.; Cai, Y. Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam. Opt. Express 2016, 24, 13714–13728. [Google Scholar] [CrossRef]
- Liu, X.; Liu, L.; Chen, Y.; Cai, Y. Partially coherent vortex beam: From theory to experiment. Vortex Dynamics and Optical Vortices; Pérez-de-Tejada, H., Ed.; InTech-open science: London, UK, 2017. [Google Scholar]
- Liu, X.; Peng, X.; Liu, L.; Wu, G.; Zhao, C.; Wang, F.; Cai, Y. Self-reconstruction of the degree of coherence of a partially coherent vortex beam obstructed by an opaque obstacle. Appl. Phys. Lett. 2017, 110, 181104. [Google Scholar] [CrossRef]
- Zeng, J.; Liu, X.; Wang, F.; Zhao, C.; Cai, Y. Partially coherent fractional vortex beam. Opt. Express 2018, 26, 26830–26844. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, L.; Peng, X.; Liu, L.; Wang, F.; Cai, Y. Partially coherent vortex beam with periodical coherence properties. J. Quant. Spectrosc. Radiat. Transfer 2019, 222–223, 138–144. [Google Scholar] [CrossRef]
- Gori, F.; Santarsiero, M. Devising genuine spatial correlation functions. Opt. Lett. 2007, 32, 3531–3533. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Korotkova, O. Convolution approach for beam propagation in random media. Opt. Lett. 2016, 41, 1546–1549. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Li, J.; Martinez-Piedra, G.; Korotkova, O. Propagation dynamics of partially coherent crescent-like optical beams in free space and turbulent atmosphere. Opt. Express 2017, 25, 26055–26066. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Cai, Y.; Korotkova, O. Propagation factor of a stochastic electromagnetic Gaussian Schell-model beam. Opt. Express 2010, 12, 12587–12598. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, F.; Wei, C.; Cai, Y. Experimental study of turbulence-induced beam wander and deformation of a partially coherent beam. Opt. Lett. 2014, 39, 3336–3339. [Google Scholar] [CrossRef]
- Yu, J.; Chen, Y.; Liu, L.; Liu, X.; Cai, Y. Splitting and combining properties of an elegant Hermite-Gaussian correlated Schell model beam in Kolmogorov and non-Kolmogorov turbulence. Opt. Express 2015, 23, 13467–13481. [Google Scholar] [CrossRef]
- Dan, Y.; Zhang, B. Second moments of partially coherent beams in atmospheric turbulence. Opt. Lett. 2009, 34, 563–565. [Google Scholar] [CrossRef]
- Martínez-Herrero, R.; Piquero, G.; Mejías, P.M. Beam quality changes of radially and azimuthally polarized fields propagating through quartic phase plates. Opt. Commun. 2008, 281, 756–759. [Google Scholar] [CrossRef]
- Santarsiero, M.; Gori, F.; Borghi, R.; Cincotti, G.; Vahimaa, P. Spreading properties of beams radiated by partially coherent Schell-model sources. J. Opt. Soc. Am. A 1999, 1, 106–112. [Google Scholar] [CrossRef]
- Huang, Y.; Zeng, A.; Gao, Z.; Zhang, B. Beam wander of partially coherent array beams through non-Kolmogorov turbulence. Opt. Lett. 2015, 40, 1619–1622. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Yuan, Y.; Liu, X.; Zeng, J.; Wang, F.; Yu, J.; Liu, L.; Cai, Y. Propagation of Optical Coherence Vortex Lattices in Turbulent Atmosphere. Appl. Sci. 2018, 8, 2476. https://doi.org/10.3390/app8122476
Huang Y, Yuan Y, Liu X, Zeng J, Wang F, Yu J, Liu L, Cai Y. Propagation of Optical Coherence Vortex Lattices in Turbulent Atmosphere. Applied Sciences. 2018; 8(12):2476. https://doi.org/10.3390/app8122476
Chicago/Turabian StyleHuang, Yan, Yangsheng Yuan, Xianlong Liu, Jun Zeng, Fei Wang, Jiayi Yu, Lin Liu, and Yangjian Cai. 2018. "Propagation of Optical Coherence Vortex Lattices in Turbulent Atmosphere" Applied Sciences 8, no. 12: 2476. https://doi.org/10.3390/app8122476
APA StyleHuang, Y., Yuan, Y., Liu, X., Zeng, J., Wang, F., Yu, J., Liu, L., & Cai, Y. (2018). Propagation of Optical Coherence Vortex Lattices in Turbulent Atmosphere. Applied Sciences, 8(12), 2476. https://doi.org/10.3390/app8122476