Enhancing the Integration of Protein-Rich Oat Waste Material into Meat Formulations
<p>SDS-PAGE protein profile of oat by-product protein hydrolysates obtained using Alcalase. The first line displays the protein standard, while the second line represents the sample applied to the gel (OPH).</p> "> Figure 2
<p>Cross-section of meat samples. The labels 1H, 2H, and 3H represent samples with 1, 2, and 3% of the oat protein hydrolysate added, respectively; C—Control sample.</p> "> Figure 3
<p>TBARS results for meat samples containing various levels of the oat protein hydrolysate. Values with different letters indicate significant differences (<span class="html-italic">p</span> < 0.05). The labels 1H, 2H, and 3H represent samples with 1, 2, and 3% of the oat protein hydrolysate added, respectively; C—Control sample.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Oat Protein Hydrolysate Production and Characterisation
2.2.1. Oat Protein Hydrolysate Production
2.2.2. Proximate Composition and Degree of Hydrolysis of OPH
2.2.3. Electrophoresis (SDS–PAGE) of OPH
2.2.4. Amino Acid Profile and Free Amino Acid Content in OPH
2.2.5. Antioxidant Properties of OPH
2.3. Assessing the Possibility of Using an OPH as a Meat Additive
2.3.1. Meat Sample Production
2.3.2. pH Analysis
2.3.3. Cooking Losses
2.3.4. Product and Batter Moisture, Protein, and Fat Content
2.3.5. Colour Analysis
2.3.6. Texture Profile Analysis (TPA)
2.3.7. TBARS (Thiobarbituric Acid Reactive Substances) Analysis
2.4. Statistical Analysis
3. Results
3.1. Characterisation of Oat Protein Hydrolysate Properties
3.2. Assessing the Possibility of Using OPH as a Meat Additive
3.2.1. Product and Batter Moisture, Protein and Fat Content, pH, and Cooking Yields
3.2.2. Changes in Colour Parameters of Meat Samples
3.2.3. Texture Profile Analysis of Meat Samples
3.2.4. TBARS Changes of Meat Samples during Storage
4. Discussion
Assessing the Possibility of Using OPH as a Meat Additive
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirchherr, J.; Yang, N.-H.N.; Schulze-Spüntrup, F.; Heerink, M.J.; Hartley, K. Conceptualizing the Circular Economy (Revisited): An Analysis of 221 Definitions. Resour. Conserv. Recycl. 2023, 194, 107001. [Google Scholar] [CrossRef]
- Zajac, M.; Pajak, P.; Skowyra, G. Characterization of edible collagen casings in comparison with the ovine casing and their effect on sausage quality. J. Sci. Food Agric. 2021, 101, 6001–6009. [Google Scholar] [CrossRef] [PubMed]
- Vågsholm, I.; Arzoomand, N.S.; Boqvist, S. Food Security, Safety, and Sustainability—Getting the Trade-Offs Right. Front. Sustain. Food Syst. 2020, 4, 16. [Google Scholar] [CrossRef]
- Cervantes-Martinez, C.T.; Frey, K.J.; White, P.J.; Wesenberg, D.M.; Holland, J.B. Selection for Greater β-Glucan Content in Oat Grain. Crop Sci. 2001, 41, 1085–1091. [Google Scholar] [CrossRef]
- Janda, K.; Orłowska, A.; Watychowicz, K.; Jakubczyk, K. The role of oat products in the prevention and therapy of type 2 diabetes, hypercholesterolemia and obesity. Pomeranian J. Life Sci. 2019, 65, 30–36. [Google Scholar] [CrossRef]
- Aktas-Akyildiz, E.; Sibakov, J.; Nappa, M.; Hytönen, E.; Koksel, H.; Poutanen, K. Extraction of soluble β-glucan from oat and barley fractions: Process efficiency and dispersion stability. J. Cereal Sci. 2018, 81, 60–68. [Google Scholar] [CrossRef]
- Brückner-Gühmann, M.; Kratzsch, A.; Sozer, N.; Drusch, S. Oat protein as plant-derived gelling agent: Properties and potential of modification. Future Foods 2021, 4, 100053. [Google Scholar] [CrossRef]
- Mel, R.; Malalgoda, M. Oat protein as a novel protein ingredient: Structure, functionality, and factors impacting utilization. Cereal Chem. 2022, 99, 21–36. [Google Scholar] [CrossRef]
- Li, R.; Xiong, Y.L. Sensitivity of oat protein solubility to changing ionic strength and pH. J. Food Sci. 2021, 86, 78–85. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, J.; Liu, Y. Effects of partial hydrolysis on the structural, functional and antioxidant properties of oat protein isolate. Food Funct. 2020, 11, 3144–3155. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, Y.; Ma, C.-M.; Bian, X.; Ren, L.-K.; Liu, B.-X.; Ai, L.-Z.; Zhang, N. The improvement of the oxidative oat (Avena sativa L.) protein based on ultrasound treatment: Study of structural, emulsifying, and rheological properties. Food Hydrocoll. 2023, 144, 109047. [Google Scholar] [CrossRef]
- Montserrat-de la Paz, S.; Villanueva, A.; Pedroche, J.; Millan, F.; Martin, M.E.; Millan-Linares, M.C. Antioxidant and Anti-Inflammatory Properties of Bioavailable Protein Hydrolysates from Lupin-Derived Agri-Waste. Biomolecules 2021, 11, 1458. [Google Scholar] [CrossRef]
- Calzoni, E.; Cesaretti, A.; Montegiove, N.; Pellegrino, R.M.; LeonardI, L.; EmilianI, C. Protein and amino acid profile analysis of agri-food waste biomasses. Sci. Bull. Ser. F Biotechnol. 2021, XXV, 19–25. [Google Scholar]
- Peydayesh, M.; Bagnani, M.; Soon, W.L.; Mezzenga, R. Turning Food Protein Waste into Sustainable Technologies. Chem. Rev. 2023, 123, 2112–2154. [Google Scholar] [CrossRef]
- Wu, H.; Richards, M.P.; Undeland, I. Lipid oxidation and antioxidant delivery systems in muscle food. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1275–1299. [Google Scholar] [CrossRef]
- Manessis, G.; Kalogianni, A.I.; Lazou, T.; Moschovas, M.; Bossis, I.; Gelasakis, A.I. Plant-Derived Natural Antioxidants in Meat and Meat Products. Antioxidants 2020, 9, 1215. [Google Scholar] [CrossRef] [PubMed]
- Hadidi, M.; Orellana-Palacios, J.C.; Aghababaei, F.; Gonzalez-Serrano, D.J.; Moreno, A.; Lorenzo, J.M. Plant by-product antioxidants: Control of protein-lipid oxidation in meat and meat products. LWT 2022, 169, 114003. [Google Scholar] [CrossRef]
- Miao, X.; Hastie, M.; Ha, M.; Warner, R. Consumer response to blended beef burgers and chicken nuggets is influenced by ingredient and nutrition claims—Qualitative assessment. Future Foods 2023, 8, 100247. [Google Scholar] [CrossRef]
- Tkaczewska, J.; Zając, M.; Jamróz, E.; Derbew, H. Utilising waste from soybean processing as raw materials for the production of preparations with antioxidant properties, serving as natural food preservatives—A pilot study. LWT 2022, 160, 113282. [Google Scholar] [CrossRef]
- AOAC. AOAC Official Methods of Analysis, 21st ed.; AOAC International: Rockville, MD, USA, 2019. [Google Scholar]
- Noman, A.; Xu, Y.; AL-Bukhaiti, W.Q.; Abed, S.M.; Ali, A.H.; Ramadhan, A.H.; Xia, W. Influence of enzymatic hydrolysis conditions on the degree of hydrolysis and functional properties of protein hydrolysate obtained from Chinese sturgeon (Acipenser sinensis) by using papain enzyme. Process Biochem. 2018, 67, 19–28. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Zajac, M.; Jamroz, E.; Guzik, P.; Kulawik, P.; Tkaczewska, J. Active biopolymer films based on furcellaran, whey protein isolate and Borago officinalis extract: Characterization and application in smoked pork ham production. J. Sci. Food Agric. 2020, 101, 2884–2891. [Google Scholar] [CrossRef] [PubMed]
- Sterna, V.; Zute, S.; Brunava, L. Oat Grain Composition and its Nutrition Benefice. Agric. Agric. Sci. Procedia 2016, 8, 252–256. [Google Scholar] [CrossRef]
- Duan, Y.; Zheng, C.; Zheng, J.; Ma, L.; Ma, X.; Zhong, Y.; Zhao, X.; Li, F.; Guo, Q.; Yin, Y. Profiles of muscular amino acids, fatty acids, and metabolites in Shaziling pigs of different ages and relation to meat quality. Sci. China Life Sci. 2023, 66, 1323–1339. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, C.; Bao, Y.; Liu, F.; Wang, H.; Wang, Y. Oat: Current state and challenges in plant-based food applications. Trends Food Sci. Technol. 2023, 134, 56–71. [Google Scholar] [CrossRef]
- Boukid, F. Oat proteins as emerging ingredients for food formulation: Where we stand? Eur. Food Res. Technol. 2021, 247, 535–544. [Google Scholar] [CrossRef]
- Mune Mune, M.A. Influence of Degree of Hydrolysis on the Functional Properties of Cowpea Protein Hydrolysates. J. Food Process. Preserv. 2015, 39, 2386–2392. [Google Scholar] [CrossRef]
- Liang, G.; Chen, W.; Qie, X.; Zeng, M.; Qin, F.; He, Z.; Chen, J. Modification of soy protein isolates using combined pre-heat treatment and controlled enzymatic hydrolysis for improving foaming properties. Food Hydrocoll. 2020, 105, 105764. [Google Scholar] [CrossRef]
- Wang, H.; Xiang, L.; Rao, P.; Ke, L.; Wu, B.; Chen, S.; Wang, S.; Shi, Y.; Su, P. Effects of pretreatments on structural and functional changes of oat protein isolate. Cereal Chem. 2022, 99, 90–99. [Google Scholar] [CrossRef]
- Wong, F.-C.; Xiao, J.; Wang, S.; Ee, K.-Y.; Chai, T.-T. Advances on the antioxidant peptides from edible plant sources. Trends Food Sci. Technol. 2020, 99, 44–57. [Google Scholar] [CrossRef]
- Matemu, A.; Nakamura, S.; Katayama, S. Health Benefits of Antioxidative Peptides Derived from Legume Proteins with a High Amino Acid Score. Antioxidants 2021, 10, 316. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Yang, H.; Li, J.; Li, Z.; Jiang, Y.-M. Amino acid composition, molecular weight distribution and antioxidant activity of protein hydrolysates of soy sauce lees. Food Chem. 2011, 124, 551–555. [Google Scholar] [CrossRef]
- de Queiroz, A.L.M.; Bezerra, T.K.A.; de Freitas Pereira, S.; da Silva, M.E.C.; de Almeida Gadelha, C.A.; Gadelha, T.S.; Pacheco, M.T.B.; Madruga, M.S. Functional protein hydrolysate from goat by-products: Optimization and characterization studies. Food Biosci. 2017, 20, 19–27. [Google Scholar] [CrossRef]
- Esfandi, R.; Seidu, I.; Willmore, W.; Tsopmo, A. Antioxidant, pancreatic lipase, and α-amylase inhibitory properties of oat bran hydrolyzed proteins and peptides. J. Food Biochem. 2022, 46, e13762. [Google Scholar] [CrossRef] [PubMed]
- Tkaczewska, J.; Borawska-Dziadkiewicz, J.; Kulawik, P.; Duda, I.; Morawska, M.; Mickowska, B. The effects of hydrolysis condition on the antioxidant activity of protein hydrolysate from Cyprinus carpio skin gelatin. LWT 2020, 117, 108616. [Google Scholar] [CrossRef]
- Kim, J.-H.; Jang, H.-J.; Cho, W.-Y.; Yeon, S.-J.; Lee, C.-H. In vitro antioxidant actions of sulfur-containing amino acids. Arab. J. Chem. 2020, 13, 1678–1684. [Google Scholar] [CrossRef]
- Rezvankhah, A.; Yarmand, M.S.; Ghanbarzadeh, B.; Mirzaee, H. Generation of bioactive peptides from lentil protein: Degree of hydrolysis, antioxidant activity, phenol content, ACE-inhibitory activity, molecular weight, sensory, and functional properties. J. Food Meas. Charact. 2021, 15, 5021–5035. [Google Scholar] [CrossRef]
- Oliveira, C.; Coletto, D.; Correa, A.; Daroit, D.; Toniolo, R.; Cladera-Olivera, F.; Brandelli, A. Antioxidant activity and inhibition of meat lipid oxidation by soy protein hydrolysates obtained with a microbial protease. Int. Food Res. J. 2014, 21, 775. [Google Scholar]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef]
- Oswell, N.J.; Gilstrap, O.P.; Pegg, R.B. Variation in the terminology and methodologies applied to the analysis of water holding capacity in meat research. Meat Sci. 2021, 178, 108510. [Google Scholar] [CrossRef]
- Jin, S.-K.; Choi, J.-S.; Kim, G.-D. Effect of porcine plasma hydrolysate on physicochemical, antioxidant, and antimicrobial properties of emulsion-type pork sausage during cold storage. Meat Sci. 2021, 171, 108293. [Google Scholar] [CrossRef]
- Zając, M.; Guzik, P.; Kulawik, P.; Tkaczewska, J.; Florkiewicz, A.; Migdał, W. The quality of pork loaves with the addition of hemp seeds, de-hulled hemp seeds, hemp protein and hemp flour. LWT 2019, 105, 190–199. [Google Scholar] [CrossRef]
- Stokes, M.; Fairchild, M.D.; Berns, R.S. Precision requirements for digital color reproduction. ACM Trans. Graph. 1992, 11, 406–422. [Google Scholar] [CrossRef]
- Altmann, B.A.; Gertheiss, J.; Tomasevic, I.; Engelkes, C.; Glaesener, T.; Meyer, J.; Schäfer, A.; Wiesen, R.; Mörlein, D. Human perception of color differences using computer vision system measurements of raw pork loin. Meat Sci. 2022, 188, 108766. [Google Scholar] [CrossRef]
- Commission E. COMMISSION REGULATION (EU) 2023/2108 of 6 October 2023 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council and the Annex to Commission Regulation (EU) No 231/2012 as Regards food Additives Nitrites (E 249-250) and Nitrates (E 251-252). 2023. Available online: https://eur-lex.europa.eu/eli/reg/2023/2108/oj (accessed on 10 April 2024).
- Suman, S.P.; Joseph, P. Myoglobin chemistry and meat color. Annu. Rev. Food Sci. Technol. 2013, 4, 79–99. [Google Scholar] [CrossRef]
- Kubec, R.; Velíšek, J. Allium Discoloration: The Color-Forming Potential of Individual Thiosulfinates and Amino Acids: Structural Requirements for the Color-Developing Precursors. J. Agric. Food Chem. 2007, 55, 3491–3497. [Google Scholar] [CrossRef]
- Papuc, C.; Goran, G.V.; Predescu, C.N.; Nicorescu, V.; Stefan, G. Plant polyphenols as antioxidant and antibacterial agents for shelf-life extension of meat and meat products: Classification, structures, sources, and action mechanisms. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1243–1268. [Google Scholar] [CrossRef] [PubMed]
- Wakamatsu, J.-I.; Okui, J.; Hayashi, N.; Nishimura, T.; Hattori, A. Zn protoporphyrin IX is formed not from heme but from protoporphyrin IX. Meat Sci. 2007, 77, 580–586. [Google Scholar] [CrossRef]
- Estévez, M. Critical overview of the use of plant antioxidants in the meat industry: Opportunities, innovative applications and future perspectives. Meat Sci. 2021, 181, 108610. [Google Scholar] [CrossRef]
- Rafique, H.; Dong, R.; Wang, X.; Alim, A.; Aadil, R.M.; Li, L.; Zou, L.; Hu, X. Dietary-Nutraceutical Properties of Oat Protein and Peptides. Front. Nutr. 2022, 9, 950400. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Gullón, B.; Pateiro, M.; Tomasevic, I.; Domínguez, R.; Lorenzo, J.M. Natural Antioxidants from Seeds and Their Application in Meat Products. Antioxidants 2020, 9, 815. [Google Scholar] [CrossRef] [PubMed]
- Beltran, E.; Pla, R.; Yuste, J.; Mor-Mur, M. Lipid oxidation of pressurized and cooked chicken: Role of sodium chloride and mechanical processing on TBARS and hexanal values. Meat Sci. 2003, 64, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Procházková, D.; Boušová, I.; Wilhelmová, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia 2011, 82, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Masuda, T.; Inai, M.; Miura, Y.; Masuda, A.; Yamauchi, S. Effect of Polyphenols on Oxymyoglobin Oxidation: Prooxidant Activity of Polyphenols in Vitro and Inhibition by Amino Acids. J. Agric. Food Chem. 2013, 61, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- León-González, A.J.; Auger, C.; Schini-Kerth, V.B. Pro-oxidant activity of polyphenols and its implication on cancer chemoprevention and chemotherapy. Biochem. Pharmacol. 2015, 98, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.S.; Ahmad, A.; Sohail, A.; Asad, M.J. Nutritional and functional characterization of different oat (Avena sativa L.) cultivars. Int. J. Food Prop. 2020, 23, 1373–1385. [Google Scholar] [CrossRef]
- Dickinson, E. Emulsion gels: The structuring of soft solids with protein-stabilized oil droplets. Food Hydrocoll. 2012, 28, 224–241. [Google Scholar] [CrossRef]
- Youssef, M.K.; Barbut, S. Physicochemical Effects of the Lipid Phase and Protein Level on Meat Emulsion Stability, Texture, and Microstructure. J. Food Sci. 2010, 75, S108–S114. [Google Scholar] [CrossRef] [PubMed]
- Egbert, W.R.; Payne, C.T. Plant Proteins. In Ingredients in Meat Products; Tarte, R., Ed.; Springer Science + Business Media: New York, NY, USA, 2009; pp. 111–130. [Google Scholar]
- Ebert, S.; Kaplan, S.; Brettschneider, K.; Terjung, N.; Gibis, M.; Weiss, J. Aggregation behavior of solubilized meat—Potato protein mixtures. Food Hydrocoll. 2021, 113, 106388. [Google Scholar] [CrossRef]
- Gao, X.-Q.; Hao, X.-Z.; Xiong, G.-Y.; Ge, Q.-F.; Zhang, W.-G.; Zhou, G.-H.; Yue, X.-Y. Interaction between carrageenan/soy protein isolates and salt-soluble meat protein. Food Bioprod. Process. 2016, 100, 47–53. [Google Scholar] [CrossRef]
- Liu, R.; Zhao, S.-M.; Xiong, S.-B.; Xie, B.-J.; Qin, L.-H. Role of secondary structures in the gelation of porcine myosin at different pH values. Meat Sci. 2008, 80, 632–639. [Google Scholar] [CrossRef] [PubMed]
Moisture | Fat | Protein | Ash | Carbohydrates | |
---|---|---|---|---|---|
Raw material | 5.00 ± 0.08 | 10.64 ± 1.17 | 42.18 ± 1.48 | 6.87 ± 0.90 | 35.07 ± 3.67 |
Hydrolyzed | 0.50 ± 0.02 | 6.11 ± 0.79 | 52.00 ± 3.29 | 1.82 ± 0.16 | 40.31 ± 1.06 |
Antioxidant properties | |||||
FRAP μM Trolox/mg liophylysate | Metal chelating ability [%] | DPPH [%] | |||
Hydrolyzed | 18.26 ± 0.15 | 59.15 ± 2.78 | 1.23 ± 0.47 |
Amino Acid Profile [%] | Free Amino Acids [mg/100 g] | |
---|---|---|
Aspartic acid | 8.42 ± 0.02 | 7.43 ± 0.45 |
Serine | 4.99 ± 0.01 | 19.83 ± 1.21 |
Glutamic acid | 23.77 ± 0.03 | 32.74 ± 1.99 |
Glycine | 5.21 ± 0.02 | 10.87 ± 0.66 |
Histidine | 2.43 ± 0.00 | 23.55 ± 1.43 |
Arginine | 7.05 ± 0.05 | 9.76 ± 0.59 |
Threonine | 3.54 ± 0.01 | 12.23 ± 0.74 |
Alanine | 5.35 ± 0.18 | 16.62 ± 1.01 |
Proline | 5.83 ± 0.02 | 22.78 ± 1.39 |
Cysteine | 0.09 ± 0.00 | 0.00 ± 0.00 |
Tyrosine | 3.60 ± 0.00 | 11.03 ± 0.67 |
Valine | 6.21 ± 0.00 | 32.35 ± 1.97 |
Methionine | 1.58 ± 0.02 | 2.13 ± 0.13 |
Lysine | 4.25 ± 0.00 | 44.02 ± 2.68 |
Isoleucine | 4.43 ± 0.00 | 58.36 ± 3.55 |
Leucine | 8.46 ± 0.00 | 49.43 ± 3.01 |
Phenylalanine | 4.78 ± 0.09 | 4.09 ± 0.25 |
Sum of amino acids (mg/100 g of hydrolysates) | 357.23 ± 21.76 |
Variant | pH | Dry Matter [%] | Fat [%] | Cooking Yield [%] | |||||
---|---|---|---|---|---|---|---|---|---|
C | Raw | 6.28 | ±0.21 | 26.82 2 | ±0.24 | 10.33 2 | ±0.16 | ||
Cooked | 33.76 a | ±0.09 | 13.69 a | ±0.05 | 90.63 c | ±0.20 | |||
1H | Raw | 6.37 | ±0.27 | 26.87 2 | ±0.15 | 9.49 2 | ±0.22 | ||
Cooked | 31.97 b | ±0.15 | 12.12 b | ±0.15 | 91.89 bc | ±0.27 | |||
2H | Raw | 6.54 | ±0.17 | 27.15 2 | ±0.14 | 9.57 2 | ±0.30 | ||
Cooked | 30.47 c | ±0.01 | 10.82 b | ±0.13 | 92.71 b | ±0.36 | |||
3H | Raw | 6.66 | ±0.15 | 29.36 1 | ±0.51 | 11.38 1 | ±0.70 | ||
Cooked | 31.18 bc | 0.04 | 11.93 b | ±0.05 | 93.74 a | ±0.18 |
Variant | Storage Duration [Days] | L* | a* | b* | ΔE | |||
---|---|---|---|---|---|---|---|---|
C | 1 | 65.70 ab | ±0.35 | 1.30 cde | ±0.04 | 11.73 d | ±0.17 | |
7 | 65.90 a | ±0.37 | 0.88 fgh | ±0.06 | 12.00 cd | ±0.13 | ||
14 | 65.43 ab | ±0.70 | 0.66 h | ±0.13 | 12.62 abc | ±0.26 | ||
21 | 65.44 ab | ±0.47 | 0.83 gh | ±0.04 | 12.72 abc | ±0.22 | ||
1H | 1 | 64.68 abcd | ±0.31 | 1.49 abcd | ±0.04 | 11.98 cd | ±0.15 | 1.04 |
7 | 65.09 abc | ±0.28 | 1.16 def | ±0.03 | 12.17 bcd | ±0.11 | 0.86 | |
14 | 63.94 abcde | ±0.65 | 1.05 efg | ±0.11 | 12.73 abc | ±0.22 | 1.49 | |
21 | 64.39 abcde | ±0.52 | 1.15 efg | ±0.05 | 12.90 ab | ±0.21 | 1.10 | |
2H | 1 | 63.77 abcde | ±0.26 | 1.66 ab | ±0.05 | 12.32 abcd | ±0.12 | 1.97 |
7 | 64.26 abcde | ±0.25 | 1.37 bcde | ±0.04 | 12.39 abcd | ±0.09 | 1.72 | |
14 | 63.11 cde | ±0.55 | 1.29 cde | ±0.07 | 13.00 a | ±0.22 | 2.42 | |
21 | 63.65 bcde | ±0.60 | 1.50 abc | ±0.03 | 13.06 a | ±0.16 | 1.91 | |
3H | 1 | 62.92 cde | ±0.27 | 1.79 a | ±0.07 | 12.60 abc | ±0.10 | 2.82 |
7 | 63.61 bcde | ±0.16 | 1.48 abcd | ±0.06 | 12.64 abc | ±0.04 | 2.38 | |
14 | 62.31 e | ±0.53 | 1.59 abc | ±0.09 | 13.15 a | ±0.20 | 3.26 | |
21 | 62.56 de | ±0.44 | 1.69 ab | ±0.07 | 13.09 a | ±0.12 | 3.00 |
Variant | Storage Duration | Hardness [N] | Adhesiveness [ns] | Springiness [ns] | Cohesiveness | Chewiness | Resilience | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | 1 | 41.55 d | ±1.28 | −27.00 | ±6.76 | 0.83 | ±0.01 | 0.62 c | ±0.02 | 21.20 d | ±0.78 | 0.27 e | ±0.01 |
8 | 53.70 abc | ±2.23 | −23.95 | ±6.28 | 0.81 | ±0.03 | 0.64 c | ±0.02 | 28.01 bcd | ±1.61 | 0.29 de | ±0.01 | |
15 | 54.85 abc | ±3.47 | −44.18 | ±11.44 | 0.86 | ±0.01 | 0.68 abc | ±0.01 | 31.97 abc | ±2.03 | 0.32 bcde | ±0.01 | |
22 | 56.94 ab | ±1.33 | −35.08 | ±6.36 | 0.85 | ±0.01 | 0.65 bc | ±0.03 | 31.40 abc | ±1.68 | 0.29 de | ±0.02 | |
1H | 1 | 43.05 cd | ±2.53 | −25.64 | ±7.42 | 0.81 | ±0.04 | 0.69 abc | ±0.01 | 24.11 cd | ±1.79 | 0.32 bcd | ±0.01 |
8 | 59.32 a | ±2.30 | −44.22 | ±5.60 | 0.85 | ±0.01 | 0.67 bc | ±0.01 | 33.62 ab | ±1.08 | 0.31 cde | ±0.01 | |
15 | 55.28 abc | ±3.03 | −55.57 | ±9.93 | 0.85 | ±0.03 | 0.71 abc | ±0.02 | 33.28 abc | ±1.98 | 0.33 abcd | ±0.01 | |
22 | 53.99 abc | ±1.65 | −27.65 | ±6.23 | 0.89 | ±0.01 | 0.71 ab | ±0.02 | 34.23 ab | ±1.29 | 0.34 abc | ±0.01 | |
2H | 1 | 46.75 bcd | ±2.70 | −38.62 | ±6.21 | 0.84 | ±0.03 | 0.72 ab | ±0.01 | 28.17 bcd | ±1.73 | 0.35 abc | ±0.00 |
8 | 57.37 a | ±2.37 | −42.21 | ±6.71 | 0.85 | ±0.02 | 0.71 abc | ±0.01 | 34.80 a | ±1.66 | 0.34 abc | ±0.00 | |
15 | 52.58 abcd | ±1.97 | −21.68 | ±6.68 | 0.90 | ±0.01 | 0.73 a | ±0.00 | 34.44 ab | ±1.52 | 0.35 abc | ±0.01 | |
22 | 51.46 abcd | ±2.61 | −34.14 | ±6.50 | 0.88 | ±0.02 | 0.73 ab | ±0.01 | 33.05 abc | ±1.50 | 0.36 ab | ±0.01 | |
3H | 1 | 44.09 cd | ±1.86 | −49.48 | ±5.68 | 0.85 | ±0.03 | 0.73 a | ±0.01 | 27.37 bcd | ±1.39 | 0.36 ab | ±0.01 |
8 | 56.37 ab | ±1.52 | −45.92 | ±6.14 | 0.87 | ±0.01 | 0.72 ab | ±0.01 | 35.48 a | ±0.86 | 0.35 ab | ±0.00 | |
15 | 48.17 abcd | ±3.13 | −20.31 | ±7.05 | 0.87 | ±0.04 | 0.74 a | ±0.01 | 31.64 abc | ±2.80 | 0.37 a | ±0.01 | |
22 | 56.56 ab | ±1.78 | −48.82 | ±6.71 | 0.87 | ±0.01 | 0.74 a | ±0.00 | 36.32 a | ±0.84 | 0.37 a | ±0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tkaczewska, J.; Zając, M. Enhancing the Integration of Protein-Rich Oat Waste Material into Meat Formulations. Appl. Sci. 2024, 14, 3445. https://doi.org/10.3390/app14083445
Tkaczewska J, Zając M. Enhancing the Integration of Protein-Rich Oat Waste Material into Meat Formulations. Applied Sciences. 2024; 14(8):3445. https://doi.org/10.3390/app14083445
Chicago/Turabian StyleTkaczewska, Joanna, and Marzena Zając. 2024. "Enhancing the Integration of Protein-Rich Oat Waste Material into Meat Formulations" Applied Sciences 14, no. 8: 3445. https://doi.org/10.3390/app14083445
APA StyleTkaczewska, J., & Zając, M. (2024). Enhancing the Integration of Protein-Rich Oat Waste Material into Meat Formulations. Applied Sciences, 14(8), 3445. https://doi.org/10.3390/app14083445