Abstract
This study aimed to hydrolyze lentil protein from two hydrolysis stages: single and sequential hydrolysis using Alcalase (1, 2, and 4% w/w enzyme to substrate (E:S)) and Flavourzyme (2% w/w) through a processing time of 180 min with an interval of 30 min, and then, degree of hydrolysis (DH), antioxidant and angiotensin-converting enzyme (ACE)-inhibitory activities, phenolic compounds, amino acid composition, molecular weight (MW) distribution, molecular weight profile, sensory, and functional properties were evaluated. The highest DH (47.05%), ACE-inhibitory (0.25 mg/mL), and phenolic compounds (3.84 mg GAE/g) were obtained when sequential hydrolysis was accomplished at Alcalase and Flavourzyme concentrations of 2% w/w and hydrolysis time of 120 and 60 min, respectively. Hydrolysis did not change the main amino acid profile. Despite this, the amino acids which contribute to umami taste were increased after hydrolysis. According to Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) results, the lowest MW peptides were produced by sequential hydrolysis which was agreed by gel permeation chromatography (GPC) (4.4 kDa and 100 Da). Sensorial analysis indicated that peptides produced by Alcalase at 1% w/w concentration with hydrolysis time of 180 min (Al-1%-180 min, DH value of 15.72%) had the highest bitter taste and further hydrolysis led to reduction of bitter taste and sweetness was increased for Flavourzyme (Fl-2%-180 min) and also sequential hydrolysis produced peptides. Alcalase digests indicated higher solubility than control and Flavourzyme digest. The emulsifying activity index (EAI) was decreased (35.2 to 21.5%) while Foaming capacity (FC) was increased (80 to 104.76%) by Alcalase hydrolysis.
Similar content being viewed by others
References
L. Sha, Y.L. Xiong, Trends Food Sci. Technol. 102, 51 (2020)
V. Joshi, S. Kumar, Int. J. Food Ferment. Technol. 5, 107 (2015)
A. Nisov, D. Ercili-Cura, E. Nordlund, Food Chem. 302, (2020).
O. Nivala, E. Nordlund, K. Kruus, D. Ercili-Cura, Lwt 139, (2021).
Y. Zhao, X. Zhao, D. Sun-Waterhouse, G. I. N. Waterhouse, M. Zhao, J. Zhang, F. Wang, G. Su, Food Chem. 128803 (2020).
S. Meng, Y. Tan, S. Chang, J. Li, S. Maleki, N. Puppala, Food Chem. 302, (2020).
M. H. G. Gomes, L. E. Kurozawa, J. Food Eng. 267, (2020).
C. Barbana, J.I. Boye, Food Chem. 127, 94 (2011)
S.K. Ulug, F. Jahandideh, J. Wu, Trends Food Sci. Technol. 108, 27 (2021)
M.A. Nazir, T.H. Mu, M. Zhang, Int. J. Food Sci. Technol. 55, 482 (2020)
Y. Zhao, M. Zhang, S. Devahastin, Y. Liu, Trends Food Sci. Technol. 93, 125 (2019)
N. Song, C. Tan, M. Huang, P. Liu, K. Eric, X. Zhang, S. Xia, C. Jia, Food Chem. 136, 144 (2013)
M. Joshi, B. Adhikari, P. Aldred, J.F. Panozzo, S. Kasapis, Food Chem. 129, 1513 (2011)
M.G. Nosworthy, G. Medina, A.J. Franczyk, J. Neufeld, P. Appah, A. Utioh, P. Frohlich, J.D. House, Food Chem. 240, 588 (2018)
F. Roy, J.I. Boye, B.K. Simpson, Food Res. Int. 43, 432 (2010)
J.I. Boye, S. Roufik, N. Pesta, C. Barbana, LWT - Food Sci. Technol. 43, 987 (2010)
S.Y. Lee, S.J. Hur, Food Chem. 228, 506 (2017)
C. Sonklin, N. Laohakunjit, O. Kerdchoechuen, K. Ratanakhanokchai, J. Food Sci. Technol. 55, 265 (2018)
R. Hu, G. Chen, Y. Li, Molecules 25, (2020).
Y. Xu, M. Galanopoulos, E. Sismour, S. Ren, Z. Mersha, P. Lynch, A. Almutaimi, J. Food Meas. Charact. 14, 343 (2020)
N.A. Avramenko, N.H. Low, M.T. Nickerson, Food Res. Int. 51, 162 (2013)
V.G. Tacias-Pascacio, R. Morellon-Sterling, E.H. Siar, O. Tavano, Á. Berenguer-Murcia, R. Fernandez-Lafuente, Int. J. Biol. Macromol. 165, 2143 (2020)
J. Xie, M. Du, M. Shen, T. Wu, L. Lin, Food Chem. 270, 243 (2019)
J. Adler-Nissen, J. Chem. Technol. Biotechnol. Biotechnol. 34B, 215 (1984)
C.K. Wei, K. Thakur, D.H. Liu, J.G. Zhang, Z.J. Wei, Food Chem. 263, 186 (2018)
M. Karamać, A. Rybarczyk, Polish J. Food Nutr. Sci. 58, 351 (2008)
A.N.A. Aryee, J.I. Boye, Int. J. Food Prop. 19, 2649 (2016)
C. Moreno, L. Mojica, E. González de Mejía, R.M. Camacho Ruiz, D.A. Luna-Vital, Foods 9, 1678 (2020)
C. Barbana, A.C. Boucher, J.I. Boye, Food Res. Int. 44, 174 (2011)
P. Garcia-Mora, E. Peñas, J. Frias, C. Martínez-Villaluenga, J. Agric. Food Chem. 62, 4166 (2014)
B. Cabanillas, M. M. Pedrosa, J. Rodríguez, Á. González, M. Muzquiz, C. Cuadrado, J. F. Crespo, C. Burbano, Mol. Nutr. Food Res. 54, 1266 (2010)
K. George Masamba, Y. Li, M. Chen, H. Rizwan Sharif, M. Jamirul Ashad Zehadi, K. Masamba, X. Chen, F. Zhong, Artic. J. Plant Sci. 3, 123 (2015)
A. Rezvankhah, Z. Emam-Djomeh, G. Askari, Dry. Technol. Rev. 38, 235 (2020)
W. Horwitz, G. Latimer, Official Methods of Analysis of AOAC International (Gaithersburg, MD, 2016)
H.G. Akillioǧlu, S. Karakaya, Eur. Food Res. Technol. 229, 915 (2009)
J. Adler-Nissen, Enzym. Hydrolys. Food Proteins 116–124 (1986).
W. Song, X. Kong, Y. Hua, Y. Chen, C. Zhang, Y. Chen, Lwt 125, (2020).
F. Alipoorfard, M. Jouki, H. Tavakolipour, J. Food Sci. Technol. 57, 3165 (2020)
A. Milani, M. Jouki, M. Rabbani, Food Sci. Nutr. 8, 3768 (2020)
I. Fathollahy, J. Farmani, M.R. Kasaai, H. Hamishehkar, LWT 140, 110765 (2021)
S. Jafari, M. Jouki, M. Soltani, J. Food Meas. Charact. 1 (2021).
M.M. Bradford, Anal. Biochem. 72, 248 (1976)
Q. Zhao, H. Xiong, C. Selomulya, X.D. Chen, H. Zhong, S. Wang, W. Sun, Q. Zhou, Food Chem. 134, 1360 (2012)
D.X. Jin, X.L. Liu, X.Q. Zheng, X.J. Wang, J.F. He, Food Chem. 204, 427 (2016)
P. Thamnarathip, K. Jangchud, S. Nitisinprasert, B. Vardhanabhuti, J. Cereal Sci. 69, 329 (2016)
P. Garcia-Mora, E. Peñas, J. Frias, R. Gomez, C. Martinez-Villaluenga, Food Chem. 171, 224 (2015)
L. You, M. Zhao, C. Cui, H. Zhao, B. Yang, Innov. Food Sci. Emerg. Technol. 10, 235 (2009)
J.A. do Evangelho, N.L. Vanier, V.Z. Pinto, J.J.D. Berrios, A.R.G. Dias, E. da R Zavareze, Food Chem. 214, 460 (2017)
F. Bamdad, J. Wu, L. Chen, J. Cereal Sci. 54, 20 (2011)
P. Mudgil, L.S. Omar, H. Kamal, B.P. Kilari, S. Maqsood, LWT 110, 207 (2019)
A. Hernández-Jabalera, I. Cortés-Giraldo, G. Dávila-Ortíz, J. Vioque, M. Alaiz, J. Girón-Calle, C. Megías, C. Jiménez-Martínez, Food Chem. 178, 346 (2015)
K. Sarabandi, S.M. Jafari, M. Mohammadi, Z. Akbarbaglu, A. Pezeshki, M. Khakbaz Heshmati, Food Hydrocoll. 96, 442 (2019)
Z. Emam-Djomeh, A. Rezvankhah, Release and Bioavailability of Nanoencapsulated Food Ingredients (Elsevier, UK, 2020), p. 79
Q. Wang, Y. Jin, Y.L. Xiong, J. Agric. Food Chem. 66, 10827 (2018)
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Rezvankhah, A., Yarmand, M.S., Ghanbarzadeh, B. et al. Generation of bioactive peptides from lentil protein: degree of hydrolysis, antioxidant activity, phenol content, ACE-inhibitory activity, molecular weight, sensory, and functional properties. Food Measure 15, 5021–5035 (2021). https://doi.org/10.1007/s11694-021-01077-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11694-021-01077-4