A Resource Utilization Prediction Model for Cloud Data Centers Using Evolutionary Algorithms and Machine Learning Techniques
<p>Illustration of the flow of GA-PSO algorithm.</p> "> Figure 2
<p>Illustration of the flow of the hybrid model in network training.</p> "> Figure 3
<p>Architecture of the predictive systems.</p> "> Figure 4
<p>Univariate CPU utilization prediction for different models.</p> "> Figure 5
<p>Univariate memory utilization prediction for different models.</p> "> Figure 6
<p>Multiivariate CPU utilization prediction for different models.</p> "> Figure 7
<p>Multiivariate memory utilization prediction for different models.</p> "> Figure 8
<p>Percentage improvement gain of the proposed model over the other models on univariate input case.</p> "> Figure 9
<p>Percentage improvement gain of the proposed models over the other models on multiivariate input case.</p> ">
Abstract
:1. Introduction
2. Literature Review
3. Models and Methods
3.1. Neural Networks
3.2. Genetic Algorithm
Algorithm 1: Genetic algorithm |
3.3. Particle Swarm Optimization
Algorithm 2: Particle Swarm Optimization |
3.4. Proposed Algorithm
Algorithm 3: Hybrid GA-PSO algorithm |
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaur, G.; Bala, A.; Chana, I. An intelligent regressive ensemble approach for predicting resource usage in cloud computing. J. Parallel Distrib. Comput. 2019, 123, 1–12. [Google Scholar] [CrossRef]
- Muteeh, A.; Sardaraz, M.; Tahir, M. MrLBA: Multi-resource load balancing algorithm for cloud computing using ant colony optimization. Clust. Comput. 2021, 24, 3135–3145. [Google Scholar] [CrossRef]
- Malik, N.; Sardaraz, M.; Tahir, M.; Shah, B.; Ali, G.; Moreira, F. Energy-Efficient Load Balancing Algorithm for Workflow Scheduling in Cloud Data Centers Using Queuing and Thresholds. Appl. Sci. 2021, 11, 5849. [Google Scholar] [CrossRef]
- Rahmanian, A.A.; Ghobaei-Arani, M.; Tofighy, S. A learning automata-based ensemble resource usage prediction algorithm for cloud computing environment. Future Gener. Comput. Syst. 2018, 79, 54–71. [Google Scholar] [CrossRef]
- Mason, K.; Duggan, M.; Barrett, E.; Duggan, J.; Howley, E. Predicting host CPU utilization in the cloud using evolutionary neural networks. Future Gener. Comput. Syst. 2018, 86, 162–173. [Google Scholar] [CrossRef]
- Liang, Z.; Ouyang, J.; Yang, F. A hybrid GA-PSO optimization algorithm for conformal antenna array pattern synthesis. J. Electromagn. Waves Appl. 2018, 32, 1601–1615. [Google Scholar] [CrossRef]
- Moslehi, F.; Haeri, A.; Martinez-Alvarez, F. A novel hybrid GA–PSO framework for mining quantitative association rules. Soft Comput. 2020, 24, 4645–4666. [Google Scholar] [CrossRef]
- Anand, A.; Suganthi, L. Hybrid GA-PSO optimization of artificial neural network for forecasting electricity demand. Energies 2018, 11, 728. [Google Scholar] [CrossRef] [Green Version]
- Manasrah, A.M.; Ba Ali, H. Workflow scheduling using hybrid GA-PSO algorithm in cloud computing. Wirel. Commun. Mob. Comput. 2018, 2018, 1934784. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Guo, P.; Zhang, H.; Yao, J. Hybrid Particle Swarm Optimization Algorithm for Process Planning. Mathematics 2020, 8, 1745. [Google Scholar] [CrossRef]
- Ru, N.; Jianhua, Y. A GA and particle swarm optimization based hybrid algorithm. In Proceedings of the 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–6 June 2008; pp. 1047–1050. [Google Scholar]
- Nguyen, T.; Tran, N.; Nguyen, B.M.; Nguyen, G. A resource usage prediction system using functional-link and genetic algorithm neural network for multivariate cloud metrics. In Proceedings of the 2018 IEEE 11th Conference on Service-Oriented Computing and Applications (SOCA), Paris, France, 20–22 November 2018; pp. 49–56. [Google Scholar]
- Liu, C.; Liu, C.; Shang, Y.; Chen, S.; Cheng, B.; Chen, J. An adaptive prediction approach based on workload pattern discrimination in the cloud. J. Netw. Comput. Appl. 2017, 80, 35–44. [Google Scholar] [CrossRef]
- Moreno-Vozmediano, R.; Montero, R.S.; Huedo, E.; Llorente, I.M. Efficient resource provisioning for elastic Cloud services based on machine learning techniques. J. Cloud Comput. 2019, 8, 5. [Google Scholar] [CrossRef]
- Song, B.; Yu, Y.; Zhou, Y.; Wang, Z.; Du, S. Host load prediction with long short-term memory in cloud computing. J. Supercomput. 2018, 74, 6554–6568. [Google Scholar] [CrossRef]
- Sniezynski, B.; Nawrocki, P.; Wilk, M.; Jarzab, M.; Zielinski, K. VM reservation plan adaptation using machine learning in cloud computing. J. Grid Comput. 2019, 17, 797–812. [Google Scholar] [CrossRef] [Green Version]
- Kumar, J.; Singh, A.K. Workload prediction in cloud using artificial neural network and adaptive differential evolution. Future Gener. Comput. Syst. 2018, 81, 41–52. [Google Scholar] [CrossRef]
- Kumar, J.; Goomer, R.; Singh, A.K. Long short term memory recurrent neural network (LSTM-RNN) based workload forecasting model for cloud datacenters. Procedia Comput. Sci. 2018, 125, 676–682. [Google Scholar] [CrossRef]
- Tran, N.; Nguyen, T.; Nguyen, B.M.; Nguyen, G. A multivariate fuzzy time series resource forecast model for clouds using LSTM and data correlation analysis. Procedia Comput. Sci. 2018, 126, 636–645. [Google Scholar] [CrossRef]
- Babu, G.P.; Tiwari, A. Energy Efficient Scheduling Algorithm for Cloud Computing Systems Based on Prediction Model. Int. J. Adv. Netw. Appl. 2019, 10, 4013–4018. [Google Scholar] [CrossRef]
- Ramanathan, R.; Latha, B. Towards optimal resource provisioning for Hadoop-MapReduce jobs using scale-out strategy and its performance analysis in private cloud environment. Clust. Comput. 2019, 22, 14061–14071. [Google Scholar] [CrossRef]
- Gupta, S.; Dileep, A.D.; Gonsalves, T.A. Online sparse blstm models for resource usage prediction in cloud datacentres. IEEE Trans. Netw. Serv. Manag. 2020, 17, 2335–2349. [Google Scholar] [CrossRef]
- Saxena, D.; Singh, A.K.; Buyya, R. OP-MLB: An online VM prediction based multi-objective load balancing framework for resource management at cloud datacenter. IEEE Trans. Cloud Comput. 2021. [Google Scholar] [CrossRef]
- Ouhame, S.; Hadi, Y.; Ullah, A. An efficient forecasting approach for resource utilization in cloud data center using CNN-LSTM model. Neural Comput. Appl. 2021, 33, 10043–10055. [Google Scholar] [CrossRef]
- Abdullah, L.; Li, H.; Al-Jamali, S.; Al-Badwi, A.; Ruan, C. Predicting multi-attribute host resource utilization using support vector regression technique. IEEE Access 2020, 8, 66048–66067. [Google Scholar] [CrossRef]
- Hassim, Y.M.M.; Ghazali, R. Functional link neural network–artificial bee colony for time series temperature prediction. In Proceedings of the International Conference on Computational Science and Its Applications, Ho Chi Minh City, Vietnam, 24–27 June 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 427–437. [Google Scholar]
- Sardaraz, M.; Tahir, M. A hybrid algorithm for scheduling scientific workflows in cloud computing. IEEE Access 2019, 7, 186137–186146. [Google Scholar] [CrossRef]
- Reiss, C.; Tumanov, A.; Ganger, G.R.; Katz, R.H.; Kozuch, M.A. Heterogeneity and dynamicity of clouds at scale: Google trace analysis. In Proceedings of the Third ACM Symposium on Cloud Computing, San Jose, CA, USA, 14–17 October 2012; pp. 1–13. [Google Scholar]
Input | Model | CPU | Memory |
---|---|---|---|
Univariate | FLGAPSONN | 0.25 | 0.018 |
FLGANN | 0.29 | 0.021 | |
FLPSONN | 0.32 | 0.024 | |
FLNN | 0.36 | 0.027 | |
Multiivariate | FLGAPSONN | 0.33 | 0.026 |
FLGANN | 0.41 | 0.033 | |
FLPSONN | 0.43 | 0.035 | |
FLNN | 0.47 | 0.039 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, S.; Tahir, M.; Sardaraz, M.; Alourani, A. A Resource Utilization Prediction Model for Cloud Data Centers Using Evolutionary Algorithms and Machine Learning Techniques. Appl. Sci. 2022, 12, 2160. https://doi.org/10.3390/app12042160
Malik S, Tahir M, Sardaraz M, Alourani A. A Resource Utilization Prediction Model for Cloud Data Centers Using Evolutionary Algorithms and Machine Learning Techniques. Applied Sciences. 2022; 12(4):2160. https://doi.org/10.3390/app12042160
Chicago/Turabian StyleMalik, Sania, Muhammad Tahir, Muhammad Sardaraz, and Abdullah Alourani. 2022. "A Resource Utilization Prediction Model for Cloud Data Centers Using Evolutionary Algorithms and Machine Learning Techniques" Applied Sciences 12, no. 4: 2160. https://doi.org/10.3390/app12042160
APA StyleMalik, S., Tahir, M., Sardaraz, M., & Alourani, A. (2022). A Resource Utilization Prediction Model for Cloud Data Centers Using Evolutionary Algorithms and Machine Learning Techniques. Applied Sciences, 12(4), 2160. https://doi.org/10.3390/app12042160