Optimum Design of Cylindrical Walls Using Ensemble Learning Methods
<p>Vertical (<b>left</b>) and horizontal (<b>right</b>) cross-sections of a water tank.</p> "> Figure 2
<p>Flow chart of the harmony search algorithm.</p> "> Figure 3
<p>Machine learning workflow.</p> "> Figure 4
<p>Comparison of the optimized and predicted h values (4 design variables). (<b>a</b>) LightGBM, (<b>b</b>) Random Forest, (<b>c</b>) XGBoost, (<b>d</b>) CatBoost.</p> "> Figure 5
<p>Model accuracies with 4 design variables. (<b>a</b>) LightGBM, (<b>b</b>) Random Forest, (<b>c</b>) XGBoost, (<b>d</b>) CatBoost.</p> "> Figure 6
<p>Comparison of the optimized and predicted h values (3 design variables). (<b>a</b>) LightGBM, (<b>b</b>) Random Forest, (<b>c</b>) XGBoost, (<b>d</b>) CatBoost.</p> "> Figure 7
<p>Model accuracies with 3 design variables. (<b>a</b>) LightGBM, (<b>b</b>) Random Forest, (<b>c</b>) XGBoost, (<b>d</b>) CatBoost.</p> "> Figure 7 Cont.
<p>Model accuracies with 3 design variables. (<b>a</b>) LightGBM, (<b>b</b>) Random Forest, (<b>c</b>) XGBoost, (<b>d</b>) CatBoost.</p> "> Figure 8
<p>Comparison of the actual and predicted (Random Forest) wall thickness values.</p> "> Figure 9
<p>Shapley values of the LightGBM model.</p> "> Figure 10
<p>Shapley values of the XGBoost model.</p> "> Figure 11
<p>Shapley values of the CatBoost model.</p> "> Figure 12
<p>Shapley values of the Random Forest model.</p> "> Figure 13
<p>Feature dependence plots for XGBoost, LightGBM, Random Forest and CatBoost. (<b>a</b>) XGBoost dependence plot for r, (<b>b</b>) XGBoost dependence plot for H, (<b>c</b>) XGBoost dependence plot for C/S, (<b>d</b>) LightGBM dependence plot for r, (<b>e</b>) LightGBM dependence plot for H, (<b>f</b>) LightGBM dependence plot for C/S, (<b>g</b>) RF dependence plot for r, (<b>h</b>) RF dependence plot for H, (<b>i</b>) RF dependence plot for C/S, (<b>j</b>) CatBoost dependence plot for r, (<b>k</b>) CatBoost dependence plot for H, (<b>l</b>) CatBoost dependence plot for C/S.</p> ">
Abstract
:1. Introduction
2. Optimization and Machine Learning Methodologies
2.1. Harmony Search Procedure
2.2. Ensemble Learning Methods
3. Results and Discussion
Interpretation of the ML Models
4. Conclusions
- Using a database of 7744 sample points, ensemble learning models could be trained that predict the optimum wall thickness of a reinforced concrete water tank with 99% accuracy. The best predictive model accuracy could be obtained through the Random Forest and CatBoost models for the datasets with three and four input variables, respectively.
- The height, radius, and concrete unit cost to steel unit cost ratio can be used for the prediction of the optimum wall thickness for the optimum construction cost.
- The height (H) of the water tank was the most important variable that affects the optimum wall thickness, followed by the radius (r) and the unit cost ratio (C/S).
- Increases in the values of H and r also have an increasing effect on the optimum wall thickness, whereas the opposite effect could be observed for the C/S ratio up to a certain point beyond which further increases in C/S do not have a significant effect on the SHAP value.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Root mean square error (RMSE) | |
Coefficient of determination (R2): | |
Mean absolute percentage error (MAPE): | |
Mean absolute error (MAE): |
References
- Yücel, M.; Kayabekir, A.E.; Bekdaş, G.; Nigdeli, S.M.; Kim, S.; Geem, Z.W. Adaptive-Hybrid Harmony Search Algorithm for Multi-Constrained Optimum Eco-Design of Reinforced Concrete Retaining Walls. Sustainability 2021, 13, 1639. [Google Scholar] [CrossRef]
- Cakiroglu, C.; Islam, K.; Bekdaş, G.; Billah, M. CO2 Emission and Cost Optimization of Concrete-Filled Steel Tubular (CFST) Columns Using Metaheuristic Algorithms. Sustainability 2021, 13, 8092. [Google Scholar] [CrossRef]
- Kayabekir, A.E.; Arama, Z.A.; Bekdaş, G.; Nigdeli, S.M.; Geem, Z.W. Eco-Friendly Design of Reinforced Concrete Retaining Walls: Multi-objective Optimization with Harmony Search Applications. Sustainability 2020, 12, 6087. [Google Scholar] [CrossRef]
- Bekdaş, G.; Yucel, M.; Nigdeli, S. Evaluation of Metaheuristic-Based Methods for Optimization of Truss Structures via Various Algorithms and Lèvy Flight Modification. Buildings 2021, 11, 49. [Google Scholar] [CrossRef]
- Bekdas, G. Optimum design of axially symmetric cylindrical reinforced concrete walls. Struct. Eng. Mech. 2014, 51, 361–375. [Google Scholar] [CrossRef]
- Hetenyi, M. Beams on Elastic Foundation; University of Michigan Press: Ann Arbor, MI, USA, 1967. [Google Scholar]
- ACI 318M-05. Building Code Requirements for Structural Concrete and Commentary; American Concrete Institute: Farmington Hills, MI, USA, 2005. [Google Scholar]
- Bekdaş, G. Harmony Search Algorithm Approach for Optimum Design of Post-Tensioned Axially Symmetric Cylindrical Reinforced Concrete Walls. J. Optim. Theory Appl. 2014, 164, 342–358. [Google Scholar] [CrossRef]
- Bekdaş, G. New improved metaheuristic approaches for optimum design of posttensioned axially symmetric cylindrical reinforced concrete walls. Struct. Des. Tall Spéc. Build. 2018, 27, e1461. [Google Scholar] [CrossRef]
- Bekdaş, G.; Nigdeli, S.M. Optimum Reduction of Flexural Effect of Axially Symmetric Cylindrical Walls with Post-tensioning Forces. KSCE J. Civ. Eng. 2017, 22, 2425–2432. [Google Scholar] [CrossRef]
- Degtyarev, V.; Naser, M. Boosting machines for predicting shear strength of CFS channels with staggered web perforations. Structures 2021, 34, 3391–3403. [Google Scholar] [CrossRef]
- Lee, S.; Vo, T.P.; Thai, H.-T.; Lee, J.; Patel, V. Strength prediction of concrete-filled steel tubular columns using Categorical Gradient Boosting algorithm. Eng. Struct. 2021, 238, 112109. [Google Scholar] [CrossRef]
- Shahriar, S.; Kayes, I.; Hasan, K.; Hasan, M.; Islam, R.; Awang, N.; Hamzah, Z.; Rak, A.; Salam, M. Potential of ARIMA-ANN, ARIMA-SVM, DT and CatBoost for Atmospheric PM2.5 Forecasting in Bangladesh. Atmosphere 2021, 12, 100. [Google Scholar] [CrossRef]
- Naser, M.Z. An engineer’ s guide to eXplainable Artificial Intelligence and Interpretable Machine Learning: Navigating cau-sality, forced goodness, and the false perception of inference. Autom. Constr. 2021, 129, 103821. [Google Scholar] [CrossRef]
- Mangalathu, S.; Jang, H.; Hwang, S.H.; Jeon, J.S. Data-driven machine-learning-based seismic failure mode identifi-cation of reinforced concrete shear walls. Eng. Struct. 2020, 208, 110331. [Google Scholar] [CrossRef]
- Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
- Cakiroglu, C.; Bekdaş, G.; Kim, S.; Geem, Z.W. Optimisation of Shear and Lateral–Torsional Buckling of Steel Plate Girders Using Meta-Heuristic Algorithms. Appl. Sci. 2020, 10, 3639. [Google Scholar] [CrossRef]
- Degertekin, S.; Minooei, M.; Santoro, L.; Trentadue, B.; Lamberti, L. Large-Scale Truss-Sizing Optimization with Enhanced Hybrid HS Algorithm. Appl. Sci. 2021, 11, 3270. [Google Scholar] [CrossRef]
- Kayabekir, A.E.; Bekdaş, G.; Nigdeli, S.M.; Geem, Z.W. Optimum Design of PID Controlled Active Tuned Mass Damper via Modified Harmony Search. Appl. Sci. 2020, 10, 2976. [Google Scholar] [CrossRef]
- Kayabekir, A.E.; Nigdeli, S.M.; Bekdaş, G. A hybrid metaheuristic method for optimization of active tuned mass dampers. Comput. Civ. Infrastruct. Eng. 2021. [Google Scholar] [CrossRef]
- Bekdaş, G. Optimum design of post-tensioned axially symmetric cylindrical walls using novel hybrid metaheuristic methods. Struct. Des. Tall Speéc. Build. 2018, 28, e1550. [Google Scholar] [CrossRef] [Green Version]
- Toklu, Y.C.; Bekdaş, G.; Geem, Z.W. Harmony Search Optimization of Nozzle Movement for Additive Manufacturing of Concrete Structures and Concrete Elements. Appl. Sci. 2020, 10, 4413. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4768–4777. [Google Scholar]
- Mangalathu, S.; Hwang, S.H.; Jeon, J.S. Failure mode and effects analysis of RC members based on ma-chine-learning-based SHapley Additive exPlanations (SHAP) approach. Eng. Struct. 2020, 219, 110927. [Google Scholar] [CrossRef]
- Somala, S.N.; Chanda, S.; Karthikeyan, K.; Mangalathu, S. Explainable Machine learning on New Zealand strong motion for PGV and PGA. Structures 2021, 34, 4977–4985. [Google Scholar] [CrossRef]
Variable | Upper Bound | Lower Bound | Increment |
---|---|---|---|
H [m] | 15 | 5 | 1 |
r [m] | 15 | 5 | 1 |
C [USD] | 100 | 30 | 10 |
S [USD] | 1000 | 300 | 100 |
Model | Parameter | Value |
---|---|---|
Random Forest | Number of estimators | 100 |
- | Minimum samples for split | 2 |
- | Minimum samples of leaf node | 1 |
XGBoost | Number of estimators | 100 |
- | Learning rate | 0.3 |
- | Subsample ratio of the training instances | 1 |
- | Maximum depth of a tree | 6 |
LightGBM | Number of estimators | 100 |
- | Maximum number of decision leaves | 31 |
- | Maximum depth of a tree | −1 (no limit) |
- | Learning rate | 0.1 |
CatBoost | Number of iterations | 1000 |
- | Learning rate | 0.05 |
- | Depth | 6 |
- | Bootstrap type | MVS |
- | R2 | RMSE | MAE | MAPE |
---|---|---|---|---|
Train (LightGBM) | 0.9996 | 0.0037 | 0.0025 | 0.0064 |
Test (LightGBM) | 0.9993 | 0.0046 | 0.0031 | 0.0077 |
Train (RF) | 0.9999 | 0.0015 | 0.0005 | 0.0012 |
Test (RF) | 0.9996 | 0.0036 | 0.0012 | 0.0030 |
Train (XGBoost) | 0.9999 | 0.0019 | 0.0012 | 0.0032 |
Test (XGBoost) | 0.9994 | 0.0043 | 0.0026 | 0.0063 |
Train (CatBoost) | 0.9999 | 0.0011 | 0.0008 | 0.0022 |
Test (CatBoost) | 0.9999 | 0.0014 | 0.0010 | 0.0027 |
R2 | RMSE | MAE | MAPE | |
---|---|---|---|---|
Train (LightGBM) | 0.9999 | 1.86 × 10−4 | 1.39 × 10−4 | 3.86 × 10−4 |
Test (LightGBM) | 0.9999 | 1.98 × 10−4 | 1.50 × 10−4 | 4.09 × 10−4 |
Train (RF) | 0.9999 | 1.60 × 10−5 | 6.40 × 10−7 | 2.10 × 10−6 |
Test (RF) | 0.9999 | 2.90 × 10−5 | 1.20 × 10−6 | 4.10 × 10−6 |
Train (XGBoost) | 0.9999 | 4.00 × 10−4 | 2.49 × 10−4 | 7.76 × 10−4 |
Test (XGBoost) | 0.9999 | 4.50 × 10−4 | 2.74 × 10−4 | 8.51 × 10−4 |
Train (CatBoost) | 0.9999 | 1.10 × 10−4 | 8.10 × 10−5 | 2.35 × 10−4 |
Test (CatBoost) | 0.9999 | 1.40 × 10−4 | 9.45 × 10−5 | 2.75 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekdaş, G.; Cakiroglu, C.; Islam, K.; Kim, S.; Geem, Z.W. Optimum Design of Cylindrical Walls Using Ensemble Learning Methods. Appl. Sci. 2022, 12, 2165. https://doi.org/10.3390/app12042165
Bekdaş G, Cakiroglu C, Islam K, Kim S, Geem ZW. Optimum Design of Cylindrical Walls Using Ensemble Learning Methods. Applied Sciences. 2022; 12(4):2165. https://doi.org/10.3390/app12042165
Chicago/Turabian StyleBekdaş, Gebrail, Celal Cakiroglu, Kamrul Islam, Sanghun Kim, and Zong Woo Geem. 2022. "Optimum Design of Cylindrical Walls Using Ensemble Learning Methods" Applied Sciences 12, no. 4: 2165. https://doi.org/10.3390/app12042165
APA StyleBekdaş, G., Cakiroglu, C., Islam, K., Kim, S., & Geem, Z. W. (2022). Optimum Design of Cylindrical Walls Using Ensemble Learning Methods. Applied Sciences, 12(4), 2165. https://doi.org/10.3390/app12042165