Long-Term Effects of Animal Manures on Nutrient Recovery and Soil Quality in Acid Typic Hapludalf under No-Till Conditions
<p>Change in soil pH in the 0–0.1 m and 0.1–0.2 m layers between soil sampling periods as impacted by fertilizer sources. Horizontal line shows initial soil pH in 2004. The results shown in the figure are the arithmetic mean and standard error based on pH values.</p> "> Figure 2
<p>Change in soil C (<b>a</b>,<b>b</b>) and N (<b>c</b>,<b>d</b>) content during the 2009–2020 period in the 0–0.1 and 0.1–0.2 m layers, respectively, as impacted by treatments. Error bars represent standard errors of the means.</p> "> Figure 3
<p>Change in soil P (<b>a</b>,<b>b</b>), K (<b>c</b>,<b>d</b>), Ca (<b>e</b>,<b>f</b>), and Mg (<b>g</b>,<b>h</b>) during the 2009–2020 period in the 0–0.1 and 0.1–0.2 m layers, respectively, as impacted by treatments. Error bars represent standard errors of the means.</p> "> Figure 4
<p>Change in the soil Cu (<b>a</b>,<b>b</b>), Zn (<b>c</b>,<b>d</b>), and Mn (<b>e</b>,<b>f</b>) during the 2009–2020 period in the 0–0.1 and 0.1–0.2 m layers, respectively, as impacted by fertilizer regimes. Error bars represent standard errors of the means.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Soil Analyses
2.3. Animal Manure Analyses
2.4. Tissue Analyses
2.5. Grain and Biomass Production
2.6. Nutrient Budgets
2.7. Climatic Indices
2.8. Statistical Analysis
3. Results
3.1. Machine-Learning Models
3.2. Grain Yield and Aboveground Biomass
3.3. Change in Soil pH
3.4. Change in Soil C and N Content
3.5. Change in Soil P, K, Ca, and Mg Content
3.6. Change in Soil Micronutrient Content (Cu, Zn, Mn)
3.7. Nutrient-Use Efficiency
4. Discussion
4.1. Crop Performance
4.2. Soil Carbon
4.3. Soil Test Levels
4.4. Nutrient-Use Efficiency
4.5. Setting Targets
4.6. Biofortification vs. Contamination
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hollins, O.; Lee, P.; Sims, E.; Bertham, O.; Symington, H.; Bell, N.; Pfaltzgraff, L.; Sjogren, P. Towards a Circular Economy-Waste Management in the EU STUDY Science and Technology Options Assessment; European Union: Brussels, Belgium, 2017. [Google Scholar]
- European Commission. A Sustainable Bioeconomy for Europe: Strengthening the Connection between Economy, Society and the Environment; European Commission: Brussels, Belgium, 2018; 107p. [Google Scholar] [CrossRef]
- EUR-Lex Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Closing the Loop—An EU Action Plan for the Circular Economy. 2015. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52015DC0614 (accessed on 7 December 2021).
- Chenu, C.; Angers, D.A.; Barré, P.; Derrien, D.; Arrouays, D.; Balesdent, J. Increasing Organic Stocks in Agricultural Soils: Knowledge Gaps and Potential Innovations. Soil Tillage Res. 2019, 188, 41–52. [Google Scholar] [CrossRef]
- Messiga, A.J.; Ziadi, N.; Morel, C.; Grant, C.; Tremblay, G.; Lamarre, G.; Parent, L.E. Long Term Impact of Tillage Practices and Biennial P and N Fertilization on Maize and Soybean Yields and Soil P Status. Field Crops Res. 2012, 133, 10–22. [Google Scholar] [CrossRef]
- Ozlu, E.; Sandhu, S.S.; Kumar, S.; Arriaga, F.J. Soil Health Indicators Impacted by Long-Term Cattle Manure and Inorganic Fertilizer Application in a Corn-Soybean Rotation of South Dakota. Sci. Rep. 2019, 9, 11776. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, T.; Wang, Y.; Tan, C.; Zhang, L.; He, X.; Welacky, T.; Che, X.; Tang, X.; Wang, Z. Crop Production and Phosphorus Legacy with Long-Term Phosphorus- and Nitrogen-Based Swine Manure Applications under Corn-Soybean Rotation. Agronomy 2021, 11, 1548. [Google Scholar] [CrossRef]
- Royer, I.; Simard, R.R.; Barnett, G.M.; Cluis, D.; Angers, D.A. Long-Term Effects of Liquid Hog Manure on the Phosphorus Status of a Silt Loam Cropped to Corn. Can. J. Soil Sci. 2003, 83, 589–600. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Xiong, X.; Wang, L.; Hou, D.; Bolan, N.S.; Ok, Y.S.; Rinklebe, J.; Tsang, D.C.W. A Critical Review on Performance Indicators for Evaluating Soil Biota and Soil Health of Biochar-Amended Soils. J. Hazard. Mater. 2021, 414, 125378. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Chowdhary, P.; Gnansounou, E.; Chaturvedi, P. Biochar and Environmental Sustainability: Emerging Trends and Techno-Economic Perspectives. Bioresour. Technol. 2021, 332, 125102. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Naresh, R.K.; Mandal, A.; Singh, R.; Dhaliwal, M.K. Dynamics and Transformations of Micronutrients in Agricultural Soils as Influenced by Organic Matter Build-up: A Review. Environ. Sustain. Indic. 2019, 1, 100007. [Google Scholar] [CrossRef]
- Duffková, R.; Hejcman, M.; Libichová, H. Effect of Cattle Slurry on Soil and Herbage Chemical Properties, Yield, Nutrient Balance and Plant Species Composition of Moderately Dry Arrhenatherion Grassland. Agric. Ecosyst. Environ. 2015, 213, 281–289. [Google Scholar] [CrossRef]
- Lourenzi, C.R.; Scherer, E.E.; Ceretta, C.A.; Tiecher, T.L.; Cancian, A.; Ferreira, P.A.A.; Brunetto, G. Atributos Químicos de Latossolo Após Sucessivas Aplicações de Composto Orgânico de Dejeto Líquido de Suínos. Pesqui. Agropecu. Bras. 2016, 51, 233–242. [Google Scholar] [CrossRef] [Green Version]
- Perramon, B.; Bosch-Serra, A.D.; Domingo, F.; Boixadera, J. Organic and Mineral Fertilization Management Improvements to a Double-Annual Cropping System under Humid Mediterranean Conditions. Eur. J. Agron. 2016, 76, 28–40. [Google Scholar] [CrossRef] [Green Version]
- Baligar, V.C.; Fageria, N.K.; He, Z.L. Nutrient use efficiency in plants. Commun. Soil Sci. Plant Anal. 2007, 32, 921–950. [Google Scholar] [CrossRef]
- Ye, L.; Zhao, X.; Bao, E.; Li, J.; Zou, Z.; Cao, K. Bio-Organic Fertilizer with Reduced Rates of Chemical Fertilization Improves Soil Fertility and Enhances Tomato Yield and Quality. Sci. Rep. 2020, 10, 177. [Google Scholar] [CrossRef] [Green Version]
- Doneda, A.; Aita, C.; Giacomini, S.J.; Miola, E.C.C.; Giacomini, D.A.; Schirmann, J.; Gonzatto, R. Fitomassa e Decomposição de Resíduos de Plantas de Cobertura Puras e Consorciadas. Rev. Bras. Ciência Solo 2012, 36, 1714–1723. [Google Scholar] [CrossRef] [Green Version]
- Associação Brasileira de Proteína Animal. Relatório Annual; Associação Brasileira de Proteína Animal: São Paulo, Brazil, 2020. [Google Scholar]
- Instituto Brasileiro de Geografia e Estatística. Pesquisa Trimestral Do Leite; Primeiros Resultados Dados Da Quantidade de Leite Cru Processado Pela Indústria; Instituto Brasileiro de Geografia e Estatística: São Paulo, Brazil, 2019.
- Couto, R.D.R.; Ferreira, P.A.A.; Ceretta, C.A.; Lourenzi, C.R.; Facco, D.B.; Tassinari, A.; Piccin, R.; de Conti, L.; Gatiboni, L.C.; Schapanski, D.; et al. Phosphorus Fractions in Soil with a Long History of Organic Waste and Mineral Fertilizer Addition. Bragantia 2017, 76, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Lourenzi, C.R.; Ceretta, C.A.; Ciancio, N.H.R.; Tiecher, T.L.; da Silva, L.O.S.; de Conti, L.; Girotto, E.; Ferreira, P.A.A.; Vidal, R.F.; Scopel, G.; et al. Forms of Nitrogen and Phosphorus Transfer by Runoff in Soil under No-Tillage with Successive Organic Waste and Mineral Fertilizers Applications. Agric. Water Manag. 2021, 248, 106779. [Google Scholar] [CrossRef]
- Adeli, A.; Varco, J.J.; Rowe, D.E. Swine Effluent Irrigation Rate and Timing Effects on Bermudagrass Growth, Nitrogen and Phosphorus Utilization, and Residual Soil Nitrogen. J. Environ. Qual. 2003, 32, 681–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatiboni, L.C.; Brunetto, G.; Kaminski, J.; Rheinheimer, D.D.S.; Ceretta, C.A.; Basso, C.J. Formas de Fósforo No Solo Após Sucessivas Adições de Dejeto Líquido de Suínos Em Pastagem Natural. Rev. Bras. Ciência Solo 2008, 32, 1753–1761. [Google Scholar] [CrossRef]
- Girotto, E.; Ceretta, C.A.; Lourenzi, C.R.; Lorensini, F.; Tiecher, T.L.; Vieira, R.C.B.; Trentin, G.; Basso, C.J.; Miotto, A.; Brunetto, G. Nutrient Transfers by Leaching in a No-Tillage System through Soil Treated with Repeated Pig Slurry Applications. Nutr. Cycl. Agroecosyst. 2013, 95, 115–131. [Google Scholar] [CrossRef]
- Wang, W.; Liang, T.; Wang, L.; Liu, Y.; Wang, Y.; Zhang, C. The Effects of Fertilizer Applications on Runoff Loss of Phosphorus. Environ. Earth Sci. 2013, 68, 1313–1319. [Google Scholar] [CrossRef]
- Myint, A.K.; Yamakawa, T.; Kajihara, Y.; Zenmyo, T. Application of Different Organic and Mineral Fertilizers on the Growth, Yield and Nutrient Accumulation of Rice in a Japanese Ordinary Paddy Field. Sci. World J. 2010, 5, 48–54. [Google Scholar] [CrossRef]
- Seidel, E.P.; Gonçalves, A.C., Jr.; Vanin, J.P.; Strey, L.; Schwantes, D.; Nacke, H. Aplicacao de Dejetos de Suinos Na Cultura Do Milho Cultivado Em Sistema de Plantio Direto. Acta Sci. Technol. 2010, 32, 113–118. [Google Scholar]
- Guo, T.; Lou, C.; Zhai, W.; Tang, X.; Hashmi, M.Z.; Murtaza, R.; Li, Y.; Liu, X.; Xu, J. Increased Occurrence of Heavy Metals, Antibiotics and Resistance Genes in Surface Soil after Long-Term Application of Manure. Sci. Total Environ. 2018, 635, 995–1003. [Google Scholar] [CrossRef]
- Motew, M.; Chen, X.; Booth, E.G.; Carpenter, S.R.; Pinkas, P.; Zipper, S.C.; Loheide, S.P.; Donner, S.D.; Tsuruta, K.; Vadas, P.A.; et al. The Influence of Legacy P on Lake Water Quality in a Midwestern Agricultural Watershed. Ecosystems 2017, 20, 1468–1482. [Google Scholar] [CrossRef]
- Damar, H.; Ziadi, N.; Lafond, J.; Parent, L.E. Potassium Transformation in Clay Soil with Contrasting K Budgets in Long-Term Experiment. Agron. J. 2020, 112, 5180–5192. [Google Scholar] [CrossRef]
- Damar, H.; Ziadi, N.; Lafond, J.; Parent, L.E. Long-Term Impact of Fertilizer Sources on Cyclic P Budget and Soil P Status under Ley Farming System. Nutr. Cycl. Agroecosyst. 2021, 119, 165–180. [Google Scholar] [CrossRef]
- Damar, H.; Ziadi, N.; Lafond, J.; Pageau, D.; Lajeunesse, J.; Parent, L.E. Cyclic Yield Stability of Ley Farming System in Northern Quebec. Agron. J. 2019, 111, 3310–3319. [Google Scholar] [CrossRef]
- Messiga, A.J.; Ziadi, N.; Angers, D.A.; Morel, C.; Parent, L.E. Tillage Practices of a Clay Loam Soil Affect Soil Aggregation and Associated C and P Concentrations. Geoderma 2011, 164, 225–231. [Google Scholar] [CrossRef]
- Parent, L.E.; Jamaly, R.; Atucha, A.; JeanneParent, E.; Workmaster, B.A.; Ziadi, N.; Parent, S.É. Current and Next-Year Cranberry Yields Predicted from Local Features and Carryover Effects. PLoS ONE 2021, 16, e0250575. [Google Scholar] [CrossRef] [PubMed]
- Soil Survey Staff Keys to Soil Taxonomy. Soil Conserv. Serv. 2014, 12, 410.
- Comissao de Química e Fertilidade do Solo Rio Grande do Sul e Santa Catarina CQFS RS/SC. Manual de Adubação e de Calagem Para os Estados Do Rio Grande so Sul e Santa Catarina, 11th ed.; Sociedade Brasileira de Ciencia do Solo/Núcleo Regional Sul: Porto Alegre, Brazil, 2016; ISBN 978-85-66301-80-9. [Google Scholar]
- Tedesco, M.; Gianello, C.; Bissani, C. Análises de Solo, Plantas e Outros Materiais; Universidade Federal do Rio Grande do Sul: Porto Alegre, Brazil, 1995; Volume 5. [Google Scholar]
- Murphy, J.; Riley, J.P. A Modified Single Solution Method for the Determination of Phosphate in Natural Waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Kaminski, J.; Gatiboni, L.C.; Rheinheimer, D.S.; Martins, J.R.; Santos, E.J.S.; Tissot, C.A. Estimativa Da Acidez Potencial Em Solos e Sua Implicação No Cálculo Da Necessidade de Calcário. Rev. Bras. Ciência Solo 2002, 26, 1107–1113. [Google Scholar] [CrossRef] [Green Version]
- Lourenzi, C.R.; Ceretta, C.A.; Cerini, J.B.; Ferreira, P.A.A.; Lorensini, F.; Girotto, E.; Tiecher, T.L.; Schapanski, D.E.; Brunetto, G. Available Content, Surface Runoff and Leaching of Phosphorus Forms in a Typic Hapludalf Treated with Organic and Mineral Nutrient Sources. Rev. Bras. Ciência Solo 2014, 38, 544–556. [Google Scholar] [CrossRef] [Green Version]
- Empresa Brasileira de Pesquisa Agropecuária. Manual de Metodos de Análise de Solo; Embrapa: Brasília, Brazil, 1997; ISBN 8585864036. [Google Scholar]
- Ma, S.; He, F.; Tian, D.; Zou, D.; Yan, Z.; Yang, Y.; Zhou, T.; Huang, K.; Shen, H.; Fang, J. Variations and Determinants of Carbon Content in Plants: A Global Synthesis. Biogeosciences 2018, 15, 693–702. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, N.; Bouroubi, Y.M.; Bélec, C.; Mullen, R.W.; Kitchen, N.R.; Thomason, W.E.; Ebelhar, S.; Mengel, D.B.; Raun, W.R.; Francis, D.D.; et al. Corn Response to Nitrogen Is Influenced by Soil Texture and Weather. Agron. J. 2012, 104, 1658–1671. [Google Scholar] [CrossRef] [Green Version]
- Filzmoser, P.; Hron, K.; Reimann, C. Univariate Statistical Analysis of Environmental (Compositional) Data: Problems and Possibilities. Sci. Total Environ. 2009, 407, 6100–6108. [Google Scholar] [CrossRef]
- De Wit, C.T. Resource Use Efficiency in Agriculture. Agric. Syst. 1992, 40, 125–151. [Google Scholar] [CrossRef]
- Gougoulias, C.; Clark, J.M.; Shaw, L.J. The Role of Soil Microbes in the Global Carbon Cycle: Tracking the below-Ground Microbial Processing of Plant-Derived Carbon for Manipulating Carbon Dynamics in Agricultural Systems. J. Sci. Food Agric. 2014, 94, 2362–2371. [Google Scholar] [CrossRef] [PubMed]
- Bailey, V.L.; Pries, C.H.; Lajtha, K. What Do We Know about Soil Carbon Destabilization? Environ. Res. Lett. 2019, 14, 083004. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wen, Y.; Li, X.; Li, Y.; Yang, X.; Lin, Z.; Song, Z.; Cooper, J.M.; Zhao, B. Soil Labile Organic Carbon Fractions and Soil Organic Carbon Stocks as Affected by Long-Term Organic and Mineral Fertilization Regimes in the North China Plain. Soil Tillage Res. 2018, 175, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Walia, M.K.; Dick, W.A. Selected Soil Physical Properties and Aggregate-Associated Carbon and Nitrogen as Influenced by Gypsum, Crop Residue, and Glucose. Geoderma 2018, 320, 67–73. [Google Scholar] [CrossRef]
- Couto, R.; Faversani, J.; Ceretta, C.A.; Ferreira, P.A.A.; Marchezan, C.; Facco, D.B.; Garlet, L.P.; Silva, J.S.; Comin, J.J.; Bizzi, C.A.; et al. Health Risk Assessment and Soil and Plant Heavy Metal and Bromine Contents in Fi Eld Plots after Ten Years of Organic and Mineral Fertilization. Ecotoxicol. Environ. Saf. 2018, 153, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Ning, C.C.; Gao, P.D.; Wang, B.Q.; Lin, W.P.; Jiang, N.H.; Cai, K.Z. Impacts of Chemical Fertilizer Reduction and Organic Amendments Supplementation on Soil Nutrient, Enzyme Activity and Heavy Metal Content. J. Integr. Agric. 2017, 16, 1819–1831. [Google Scholar] [CrossRef] [Green Version]
- Crusciol, C.A.C.; de Campos, M.; Martello, J.M.; Alves, C.J.; Nascimento, C.A.C.; dos Reis Pereira, J.C.; Cantarella, H. Organomineral Fertilizer as Source of P and K for Sugarcane. Sci. Rep. 2020, 10, 53398. [Google Scholar] [CrossRef]
- Kominko, H.; Gorazda, K.; Wzorek, Z. Formulation and Evaluation of Organo-Mineral Fertilizers Based on Sewage Sludge Optimized for Maize and Sunflower Crops. Waste Manag. 2021, 136, 57–66. [Google Scholar] [CrossRef]
- Mazeika, R.; Staugaitis, G.; Baltrusaitis, J. Engineered Pelletized Organo-Mineral Fertilizers (OMF) from Poultry Manure, Diammonium Phosphate and Potassium Chloride. ACS Sustain. Chem. Eng. 2016, 4, 2279–2285. [Google Scholar] [CrossRef]
- Merisier, M.J.; Khiari, L.; Parent, L.E.; Karam, A. Organo-Mineral Phosphate Fertilizer as Alternative to Di-Ammonium Phosphate in Potato Production. In Proceedings of the III Symposium on Agricultural and Agroindustrial Waste Management, Sao Pedro, Brazil, 12–14 March 2013. [Google Scholar]
- Zebarth, B.J.; Chabot, R.; Coulombe, J.; Simard, R.R.; Douheret, J.; Tremblay, N. Pelletized Organo-Mineral Fertilizer Product as a Nitrogen Source for Potato Production. Can. J. Soil Sci. 2005, 85, 387–395. [Google Scholar] [CrossRef] [Green Version]
- Albuquerque, J.A.; Reinert, D.J. Soil and Plant Variability in a Typic Hapludalf. Rev. Bras. Cienc. Solo 1996, 20, 151–157. [Google Scholar]
- Lal, R. Soil Health and Carbon Management. Food Energy Secur. 2016, 5, 212–222. [Google Scholar] [CrossRef]
- Bhardwaj, A.K.; Rajwar, D.; Mandal, U.K.; Ahamad, S.; Kaphaliya, B.; Minhas, P.S.; Prabhakar, M.; Banyal, R.; Singh, R.; Chaudhari, S.K.; et al. Impact of Carbon Inputs on Soil Carbon Fractionation, Sequestration and Biological Responses under Major Nutrient Management Practices for Rice-Wheat Cropping Systems. Sci. Rep. 2019, 9, 9114. [Google Scholar] [CrossRef]
- Chen, A.; Xie, X.; Dorodnikov, M.; Wang, W.; Ge, T.; Shibistova, O.; Wei, W.; Guggenberger, G. Response of Paddy Soil Organic Carbon Accumulation to Changes in Long-Term Yield-Driven Carbon Inputs in Subtropical China. Agric. Ecosyst. Environ. 2016, 232, 302–311. [Google Scholar] [CrossRef]
- Liu, Y.; Ge, T.; Zhu, Z.; Liu, S.; Luo, Y.; Li, Y.; Wang, P.; Gavrichkova, O.; Xu, X.; Wang, J.; et al. Carbon Input and Allocation by Rice into Paddy Soils: A Review. Soil Biol. Biochem. 2019, 133, 97–107. [Google Scholar] [CrossRef]
- Lourenzi, C.R.; Ceretta, C.A.; Silva, S.; Trentin, G.; Girotto, E. Soil Chemical Properties Related to Acidity under Successive Pig Slurry Applications. Rev. Bras. Cienc. Solo 2011, 35, 1827–1836. [Google Scholar] [CrossRef] [Green Version]
- Fageria, N.K.; Filho, M.P.B.; Moreira, A.; Guimarães, C.M. Foliar Fertilization of Crop Plants. J. Plant Nutr. 2009, 32, 1044–1064. [Google Scholar] [CrossRef]
- Kochian, L.V.; Piñeros, M.A.; Liu, J.; Magalhaes, J.V. Plant Adaptation to Acid Soils: The Molecular Basis for Crop Aluminum Resistance. Annu. Rev. Plant Biol. 2015, 66, 571–598. [Google Scholar] [CrossRef] [PubMed]
- Mendes, L.A.; Avellan, A.; Cruz, N.C.; Palito, C.; Römkens, P.F.A.M.; Amorim, M.J.B.; Tarelho, L.A.C.; Rodrigues, S.M. Biomass Ash Formulations as Sustainable Improvers for Mining Soil Health Recovery: Linking Soil Properties and Ecotoxicity. Environ. Pollut. 2021, 291, 118165. [Google Scholar] [CrossRef]
- Mowrer, J.; Endale, D.M.; Schomberg, H.H.; Norris, S.E.; Woodroof, R.H. Liming Potential of Poultry Litter in a Long-Term Tillage Comparison Study. Soil Tillage Res. 2020, 196, 104446. [Google Scholar] [CrossRef]
- Khiari, L.; Karam, A.; Parent, L.E.; Gagné, G. Determination of Effective Calcium Carbonate Equivalence of Primary De-Inking Paper Sludges. In Proceedings of the SIGERA III International Symposium on Agricultural and Agroindustrial Waste Management, Sao Pedro, Brazil, 14 March 2013. [Google Scholar]
- Wang, N.; Xu, R.K.; Li, J.Y. Amelioration of an Acid Ultisol by Agricultural By-Products. Land Degrad. Dev. 2011, 22, 513–518. [Google Scholar] [CrossRef]
- Culman, S.; Fulford, A.; Camberato, J.; Steinke, K. The College of Food, Agricultural, and Environmental Sciences; The Ohio State University: Columbus, OH, USA, 2020. [Google Scholar]
- Guardini, R.; Comin, J.J.; Schmitt, D.E.; Tiecher, T.; Bender, M.A.; dos Santos, D.R.; Mezzari, C.P.; Oliveira, B.S.; Gatiboni, L.C.; Brunetto, G. Accumulation of Phosphorus Fractions in Typic Hapludalf Soil after Long-Term Application of Pig Slurry and Deep Pig Litter in a No-Tillage System. Nutr. Cycl. Agroecosyst. 2012, 93, 215–225. [Google Scholar] [CrossRef]
- Ceretta, C.A.; Lorensini, F.; Brunetto, G.; Girotto, E.; Gatiboni, L.C.; Lourenzi, C.R.; Tiecher, T.L.; de Conti, L.; Trentin, G.; Miotto, A. Frações de Fósforo No Solo Após Sucessivas Aplicações de Dejetos de Suínos Em Plantio Direto. Pesqui. Agropecu. Bras. 2010, 45, 593–602. [Google Scholar] [CrossRef]
- Lourenzi, C.R.; Ceretta, C.A.; da Silva, L.S.; Girotto, E.; Lorensini, F.; Tiecher, T.L.; de Conti, L.; Trentin, G.; Brunetto, G. Nutrients in Soil Layers under No-Tillage after Successive Pig Slurry Applications. Rev. Bras. Ciência Solo 2013, 37, 157–167. [Google Scholar] [CrossRef]
- Ceretta, C.A.; Girotto, E.; Lourenzi, C.R.; Trentin, G.; Vieira, R.C.B.; Brunetto, G. Nutrient Transfer by Runoff under No Tillage in a Soil Treated with Successive Applications of Pig Slurry. Agric. Ecosyst. Environ. 2010, 139, 689–699. [Google Scholar] [CrossRef] [Green Version]
- McDowell, R.; Dodd, R.; Pletnyakov, P.; Noble, A. The Ability to Reduce Soil Legacy Phosphorus at a Country Scale. Front. Environ. Sci. 2020, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Fink, J.R.; Inda, A.V.; Bayer, C.; Torrent, J.; Barrón, V. Mineralogy and Phosphorus Adsorption in Soils of South and Central-West Brazil under Conventional and No-Tillage Systems. Acta Sci. Agron. 2014, 36, 379–387. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, F.C.; Neves, J.C.L.; Novais, R.F.; Victor Hugo Alvarez, V.; Sediyama, C.S. Modelagem Da Recomendação de Corretivos e Fertilizantes Para a Cultura Da Soja. Rev. Bras. Ciência Solo 2008, 32, 1661–1674. [Google Scholar] [CrossRef] [Green Version]
- Weingartner, S.; Gatiboni, L.C.; Dall’Orsoletta, D.J.; Kurtz, C.; Mussi, M. Rates and Localization of Phosphorus Fertilizer on Onion Yield. Rev. Ciências Agroveterinárias 2018, 17, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Tiecher, T.L.; Ceretta, C.A.; Comin, J.J.; Girotto, E.; Miotto, A.; de Moraes, M.P.; Benedet, L.; Ferreira, P.A.A.; Lorenzi, C.R.; Couto, R.D.R.; et al. Forms and Accumulation of Copper and Zinc in a Sandy Typic Hapludalf Soil after Long-Term Application of Pig Slurry and Deep Litter. Rev. Bras. Ciência Solo 2013, 37, 812–824. [Google Scholar] [CrossRef]
- Moraghan, J.T.; Mascagni, H.J. Environmental and Soil Factors Affecting Micronutrient Deficiencies and Toxicities. Micronutr. Agric. 2018, 4, 371–425. [Google Scholar] [CrossRef]
- Sims, J.T.; Johnson, G.V. Micronutrient Soil Tests. Micronutr. Agric. 2018, 4, 427–476. [Google Scholar] [CrossRef]
- Zeng, S.; Li, J.; Wei, D.; Ma, Y. A New Model Integrating Short- and Long-Term Aging of Copper Added to Soils. PLoS ONE 2017, 12, e0182944. [Google Scholar] [CrossRef] [Green Version]
- Giacomini, S.J.; Aita, C.; Pujol, S.B.; Miola, E.C.C. Transformações Do Nitrogênio No Solo Após Adição de Dejeto Líquido e Cama Sobreposta de Suínos. Pesqui. Agropecu. Bras. 2013, 48, 211–219. [Google Scholar] [CrossRef] [Green Version]
- Hernández, D.; Polo, A.; Plaza, C. Long-Term Effects of Pig Slurry on Barley Yield and N Use Efficiency under Semiarid Mediterranean Conditions. Eur. J. Agron. 2013, 44, 78–86. [Google Scholar] [CrossRef]
- Mallory, E.B.; Griffin, T.S. Impacts of Soil Amendment History on Nitrogen Availability from Manure and Fertilizer. Soil Sci. Soc. Am. J. 2007, 71, 964. [Google Scholar] [CrossRef]
- Gutser, R.; Ebertseder, T.; Weber, A.; Schraml, M.; Schmidhalter, U. Short-Term and Residual Availability of Nitrogen after Long-Term Application of Organic Fertilizers on Arable Land. J. Plant Nutr. Soil Sci. 2005, 168, 439–446. [Google Scholar] [CrossRef]
- El-Shafey, O.I.; Fathy, N.A.; El-Nabarawy, T.A. Sorption of Ammonium Ions onto Natural and Modified Egyptian Kaolinites: Kinetic and Equilibrium Studies. Adv. Phys. Chem. 2014, 2014, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Shah, G.M.; Rashid, M.I.; Shah, G.A.; Groot, J.C.J.; Lantinga, E.A. Mineralization and Herbage Recovery of Animal Manure Nitrogen after Application to Various Soil Types. Plant Soil 2013, 365, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Port, O.; Aita, C.; Giacomini, S.J. Perda de Nitrogênio Por Volatilização de Amônia Com o Uso de Dejetos de Suínos Em Plantio Direto. Pesqui. Agropecu. Bras. 2003, 38, 857–865. [Google Scholar] [CrossRef]
- Ceretta, C.A.; Durigon, R.; Basso, C.J.; Rocha Barcellos, L.A.; Beber Vieira, F.C. Características Químicas de Solo Sob Aplicação de Esterco Líquide de Suínos Em Pastagem Natural. Pesqui. Agropecu. Bras. 2003, 38, 729–735. [Google Scholar] [CrossRef] [Green Version]
- Lourenzi, C.R.; Ceretta, C.A.; Brunetto, G.; Girotto, E.; Tiecher, T.L.; Vieira, R.C.B.; Cancian, A.; Ferreira, P.A.A. Pig Slurry and Nutrient Accumulation and Dry Matter and Grain Yield in Various Crops. Rev. Bras. Ciência Solo 2014, 38, 949–958. [Google Scholar] [CrossRef] [Green Version]
- Hue, N.V. Effects of Organic Acids/Anions on P Sorption and Phytoavailability in Soils with Different Mineralogies. Soil Sci. 1991, 152, 463–471. [Google Scholar] [CrossRef]
- Khiari, L.; Parent, L.E. Phosphorus Transformations in Acid Light-Textured Soils Treated with Dry Swine Manure. Can. J. Soil Sci. 2005, 85, 75–87. [Google Scholar] [CrossRef]
- Klimek, B. Effect of Long-Term Zinc Pollution on Soil Microbial Community Resistance to Repeated Contamination. Bull. Environ. Contam. Toxicol. 2012, 88, 617–622. [Google Scholar] [CrossRef] [Green Version]
- Mathur, S.P.; Macdougall, J.I.; McGrath, M. Levels of Activities of Some Carbohydrases, Protease, Lipase, and Phosphatase in Organic Soils of Differing Copper Content. Soil Sci. 1980, 129, 376–385. [Google Scholar] [CrossRef]
- Parent, L.E.; Quinche, M. Micronutrient Soil and Tissue Test Interpretation for Vegetable Crops in Eastern Canada. J. Sci. Hortic. For. 2021, 3, 1–17. [Google Scholar]
- Murphy, L.S.; Walsh, L.M. Correction of Micronutrient Deficiencies with Fertilizers. Micronutr. Agric. 1972, 129, 376–385. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Physiological Limits to Zinc Biofortification of Edible Crops. Front. Plant Sci. 2011, 2, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyer, J. Toxicité Apparente de Certains Engrais Phosphatés et Intoxication Manganique Induite; 1980. Available online: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/cahiers/PTP/1428.PDF (accessed on 7 December 2021).
- Ouellette, G.J.; Généreux, H. Influence Du Ph et Des Elements Fertilisants Sur l’intoxication Manganique de La Pomme de Terre. Can. J. Soil Sci. 2011, 45, 347–353. [Google Scholar] [CrossRef]
- Ouellette, G.J.; Généreux, H. Influence de l’intoxication Manganique Sur Six Variétés de Pomme de Terre. Can. J. Soil Sci. 2011, 45, 24–32. [Google Scholar] [CrossRef]
- Rayne, N.; Aula, L. Livestock Manure and the Impacts on Soil Health: A Review. Soil Syst. 2020, 4, 64. [Google Scholar] [CrossRef]
- Wang, X.; Jia, Z.; Liang, L.; Yang, B.; Ding, R.; Nie, J.; Wang, J. Impacts of Manure Application on Soil Environment, Rainfall Use Efficiency and Crop Biomass under Dryland Farming. Sci. Rep. 2016, 6, 20994. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Oh, S.Y.; Oh, K.Y. Nutrient Runoff from a Korean Rice Paddy Watershed during Multiple Storm Events in the Growing Season. J. Hydrol. 2006, 327, 128–139. [Google Scholar] [CrossRef]
- Yan, X.; Wei, Z.; Hong, Q.; Lu, Z.; Wu, J. Phosphorus Fractions and Sorption Characteristics in a Subtropical Paddy Soil as Influenced by Fertilizer Sources. Geoderma 2017, 295, 80–85. [Google Scholar] [CrossRef]
- Girotto, E.; Ceretta, C.A.; Brunetto, G.; Andrade, J.G.D.; Zalamena, J. Formas de Perdas de Cobre e Fósforo Em Água de Escoamento Superficial e Percolação Em Solo Sob Aplicações Sucessivas de Dejeto Líquido de Suínos. Ciência Rural 2010, 40, 1948–1954. [Google Scholar] [CrossRef] [Green Version]
- Tiecher, T.L.; Tiecher, T.; Ceretta, C.A.; Ferreira, P.A.A.; Nicoloso, F.T.; Soriani, H.H.; Tassinari, A.; Paranhos, J.T.; de Conti, L.; Brunetto, G. Physiological and Nutritional Status of Black Oat (Avena strigosa Schreb.) Grown in Soil with Interaction of High Doses of Copper and Zinc. Plant Physiol. Biochem. 2016, 106, 253–263. [Google Scholar] [CrossRef]
- Khan, K.S.; Joergensen, R.G. Stoichiometry of the Soil Microbial Biomass in Response to Amendments with Varying C/N/P/S Ratios. Biol. Fertil. Soils 2019, 55, 265–274. [Google Scholar] [CrossRef]
- Shaheen, N.; Ahmed, M.K.; Islam, M.S.; Habibullah-Al-Mamun, M.; Tukun, A.B.; Islam, S.; Abu, A.T. Health Risk Assessment of Trace Elements via Dietary Intake of “non-Piscine Protein Source” Foodstuffs (Meat, Milk and Egg) in Bangladesh. Environ. Sci. Pollut. Res. Int. 2016, 23, 7794–7806. [Google Scholar] [CrossRef]
- Ustaoğlu, F.; Islam, M.S. Potential Toxic Elements in Sediment of Some Rivers at Giresun, Northeast Turkey: A Preliminary Assessment for Ecotoxicological Status and Health Risk. Ecol. Indic. 2020, 113, 106237. [Google Scholar] [CrossRef]
- Brevik, E.C.; Sauer, T.J. The Past, Present, and Future of Soils and Human Health Studies. Soil 2015, 1, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations. Biofortification: Better Crops, Better Nutrition. Available online: https://www.fao.org/north-america/news/detail/en/c/1144424/ (accessed on 7 December 2021).
- Clemens, S. How Metal Hyperaccumulating Plants Can Advance Zn Biofortification. Plant Soil 2017, 411, 111–120. [Google Scholar] [CrossRef]
- Cartea, M.E.; Francisco, M.; Soengas, P.; Velasco, P. Phenolic Compounds in Brassica Vegetables. Molecules 2010, 16, 251–280. [Google Scholar] [CrossRef]
- Nassar, A.M.K.; Sabally, K.; Kubow, S.; Leclerc, Y.N.; Donnelly, D.J. Some Canadian-Grown Potato Cultivars Contribute to a Substantial Content of Essential Dietary Minerals. J. Agric. Food Chem. 2012, 60, 4688–4696. [Google Scholar] [CrossRef]
- Petrovic, B.; Ekara, A.S.; Pokluda, R. Biofertilizers Enhance Quality of Onion. Agronomy 2020, 10, 1937. [Google Scholar] [CrossRef]
- Mallikarjuna, M.G.; Thirunavukkarasu, N.; Sharma, R.; Shiriga, K.; Hossain, F.; Bhat, J.S.; Mithra, A.C.R.; Marla, S.S.; Manjaiah, K.M.; Rao, A.R.; et al. Comparative Transcriptome Analysis of Iron and Zinc Deficiency in Maize (Zea mays L.). Plants 2020, 9, 1812. [Google Scholar] [CrossRef]
- Giordano, M.; El-Nakhel, C.; Pannico, A.; Kyriacou, M.C.; Stazi, S.R.; de Pascale, S.; Rouphael, Y. Iron Biofortification of Red and Green Pigmented Lettuce in Closed Soilless Cultivation Impacts Crop Performance and Modulates Mineral and Bioactive Composition. Agronomy 2019, 9, 290. [Google Scholar] [CrossRef] [Green Version]
- Rugeles-Reyes, S.M.; Cecílio Filho, A.B.; López Aguilar, M.A.; Silva, P.H.S. Foliar Application of Zinc in the Agronomic Biofortification of Arugula. Food Sci. Technol. 2019, 39, 1011–1017. [Google Scholar] [CrossRef] [Green Version]
- Agueh, V.; Degbey, C.C.; Sossa-Jerome, C.; Adomahou, D.; Paraiso, M.N.; Vissoh, S.; Makoutode, M.; Fayomi, B. Niveau de Contamination des Produits Maraîchers Par Les Substances Toxiques Sur Le Site de Houéyiho au Bénin. Int. J. Biol. Chem. Sci. 2015, 9, 542–551. [Google Scholar] [CrossRef]
- Xiong, Z.T.; Wang, H. Copper Toxicity and Bioaccumulation in Chinese Cabbage (Brassica pekinensis Rupr.). Environ. Toxicol. 2005, 20, 188–194. [Google Scholar] [CrossRef]
- Yang, J.; Ma, S.; Zhou, J.; Song, Y.; Li, F. Heavy Metal Contamination in Soils and Vegetables and Health Risk Assessment of Inhabitants in Daye, China. J. Int. Med. Res. 2018, 46, 3374–3387. [Google Scholar] [CrossRef] [Green Version]
Year | Winter Crop | Summer Crop |
---|---|---|
2004 | Avena sativa | Zea mays |
2005 | Raphanus sativus | Zea mays |
2006 | Avena sativa | Zea mays |
2007 | Raphanus sativus | Zea mays |
2008 | Avena sativa | Zea mays |
2009 | Raphanus sativus | Zea mays |
2010 | Avena sativa | Zea mays |
2011 | Avena sativa | Zea mays |
2012 | Avena sativa | Phaseolus vulgaris |
2013 | Avena sativa | Zea mays |
2014 | Triticum aestivum | Zea mays |
2015 | Avena sativa | Zea mays |
2016 | Avena sativa | Zea mays |
2017 | Avena sativa | Phaseolus vulgaris |
2018 | Avena sativa | Zea mays |
2019 | Avena sativa | Zea mays |
Feature | Grain Yield | Aboveground Dry Matter | ||||
---|---|---|---|---|---|---|
* RMSE | ** MAE | R2 | RMSE | MAE | R2 | |
Period | 1.849 | 1.375 | 0.569 | 1.687 | 1.239 | 0.630 |
Period + crop | 1.847 | 1.370 | 0.570 | 1.689 | 1.228 | 0.637 |
Period + source | 0.748 | 0.553 | 0.930 | 0.981 | 0.699 | 0.875 |
Period + source + dosage | 0.593 | 0.436 | 0.956 | 0.703 | 0.481 | 0.936 |
Maize | Avena | |||||
---|---|---|---|---|---|---|
Grain | Aboveground Crop Residues | Aboveground Crop Residues | ||||
Fertilizer Source | t ha−1 | t ha−1 | ||||
Mean | SD | Mean | SD | Mean | SD | |
Control | 2.92 | 1.17 | 4.03 | 1.29 | 1.66 | 0.55 |
Mineral fertilizer | 6.10 | 1.71 | 7.13 | 2.10 | 3.24 | 0.74 |
Cattle slurry | 6.99 | 1.75 | 8.05 | 2.32 | 3.63 | 0.87 |
Pig deep litter | 7.20 | 2.18 | 7.65 | 2.84 | 3.73 | 0.85 |
Pig slurry | 7.40 | 2.54 | 8.76 | 2.97 | 4.00 | 0.71 |
Manure Source | N | P | K | Ca | Mg | Cu | Zn | Mn |
---|---|---|---|---|---|---|---|---|
% (Mean ± Standard Deviation) | ||||||||
2009–2012 period—Dry matter | ||||||||
Cattle slurry | 3 ± 2 | 5 ± 3 | 30 ± 11 | 4 ± 2 | 8 ± 4 | 1862 ± 862 | 2327 ± 1256 | 3778 ± 1274 |
Pig deep litter | 50 ± 16 | 7 ± 3 | 21 ± 7 | 2 ± 1 | 7 ± 2 | 1651 ± 535 | 1203 ± 404 | 3056 ± 1049 |
Pig slurry | 15 ± 4 | 40 ± 14 | 55 ± 12 | 28 ± 6 | 52 ± 17 | 2351 ± 689 | 2620 ± 906 | 4802 ± 871 |
2012–2016 period—Dry matter | ||||||||
Cattle slurry | 4 ± 1 | 25 ± 6 | 62 ± 10 | 18 ± 2 | 24 ± 4 | 1785 ± 412 | 3722 ± 917 | 7575 ± 1500 |
Pig deep litter | 179 ± 13 | 14 ± 2 | 25 ± 2 | 7 ± 0.2 | 15 ± 0.3 | 1993 ± 331 | 1377 ± 227 | 3530 ± 682 |
Pig slurry | 30 ± 5 | 24 ± 6 | 55 ± 7 | 86 ±10 | 127 ± 21 | 2034 ± 452 | 2648 ± 681 | 6599 ± 902 |
2016–2020 period—Dry matter | ||||||||
Cattle slurry | 5 ± 1 | 26 ± 5 | 73 ± 9 | 20 ± 2 | 27 ± 4 | 2160 ± 414 | 4427 ± 954 | 8685 ± 1174 |
Pig deep litter | 199 ± 20 | 15 ± 2 | 30 ± 3 | 7 ± 0.2 | 17 ± 1 | 2360 ± 454 | 1603 ± 313 | 4145 ± 754 |
Pig slurry | 36 ± 6 | 28 ± 7 | 73 ± 11 | 100 ± 14 | 147 ± 26 | 2592 ± 557 | 3276 ± 806 | 10000 ± 1446 |
2009–2012 period—Grains | ||||||||
Cattle slurry | 1.5 ± 1 | 4 ± 2 | 4 ± 2 | 0.3 ± 0.1 | 2 ± 1 | 124 ± 49 | 1243 ± 495 | 199 ± 79 |
Pig deep litter | 34 ± 3 | 7 ± 1 | 5 ± 0.4 | 0.2 ± 0.1 | 3 ± 0.2 | 166 ± 13 | 858 ± 68 | 319 ± 25 |
Pig slurry | 3 ± 1 | 14 ± 2 | 4 ± 1 | 1 ± 0.2 | 7 ± 1 | 79 ± 14 | 654 ± 115 | 149 ± 26 |
2012–2016 period—Grains | ||||||||
Cattle slurry | 1 ± 0.1 | 9 ± 2 | 6 ± 2 | 1 ± 0.2 | 3 ± 1 | 174 ± 50 | 1194 ± 307 | 510 ± 142 |
Pig deep litter | 72 ± 3 | 8 ± 0.4 | 5 ± 0.2 | 1 ± 0.2 | 3 ± 0.1 | 293 ± 10 | 727 ± 34 | 419 ± 14 |
Pig slurry | 5 ± 1 | 7 ± 1 | 4 ± 1 | 3 ± 1 | 13 ± 3 | 106 ± 28 | 618 ± 116 | 269 ± 65 |
2016–2020 period—Grains | ||||||||
Cattle slurry | 1 ± 0.2 | 8 ± 2 | 7 ± 2 | 1 ± 0.3 | 4 ± 1 | 187 ± 54 | 1283 ± 330 | 504 ± 140 |
Pig deep litter | 75 ± 3 | 8 ± 0.4 | 5 ± 0.2 | 1 ± 0.02 | 4 ± 0.1 | 316 ± 10 | 784 ± 37 | 431 ± 15 |
Pig slurry | 5 ± 1 | 7 ± 1 | 4 ± 1 | 3 ± 1 | 13 ± 3 | 111 ± 29 | 643 ± 120 | 313 ± 76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, P.A.A.; Ceretta, C.A.; Lourenzi, C.R.; De Conti, L.; Marchezan, C.; Girotto, E.; Tiecher, T.L.; Palermo, N.M.; Parent, L.-É.; Brunetto, G. Long-Term Effects of Animal Manures on Nutrient Recovery and Soil Quality in Acid Typic Hapludalf under No-Till Conditions. Agronomy 2022, 12, 243. https://doi.org/10.3390/agronomy12020243
Ferreira PAA, Ceretta CA, Lourenzi CR, De Conti L, Marchezan C, Girotto E, Tiecher TL, Palermo NM, Parent L-É, Brunetto G. Long-Term Effects of Animal Manures on Nutrient Recovery and Soil Quality in Acid Typic Hapludalf under No-Till Conditions. Agronomy. 2022; 12(2):243. https://doi.org/10.3390/agronomy12020243
Chicago/Turabian StyleFerreira, Paulo Ademar Avelar, Carlos Alberto Ceretta, Cledimar Rogério Lourenzi, Lessandro De Conti, Carina Marchezan, Eduardo Girotto, Tadeu Luis Tiecher, Natália Moreira Palermo, Léon-Étienne Parent, and Gustavo Brunetto. 2022. "Long-Term Effects of Animal Manures on Nutrient Recovery and Soil Quality in Acid Typic Hapludalf under No-Till Conditions" Agronomy 12, no. 2: 243. https://doi.org/10.3390/agronomy12020243
APA StyleFerreira, P. A. A., Ceretta, C. A., Lourenzi, C. R., De Conti, L., Marchezan, C., Girotto, E., Tiecher, T. L., Palermo, N. M., Parent, L. -É., & Brunetto, G. (2022). Long-Term Effects of Animal Manures on Nutrient Recovery and Soil Quality in Acid Typic Hapludalf under No-Till Conditions. Agronomy, 12(2), 243. https://doi.org/10.3390/agronomy12020243