Comparative Transcriptome Analysis of Iron and Zinc Deficiency in Maize (Zea mays L.)
<p>Phenotypic expression of 19 days-old maize SKV616 seedlings in response to 12 days exposure to Zn and Fe deficiencies (–Zn, –Fe and –Fe–Zn): (<b>A</b>) whole plant; (<b>B</b>) leaves; and (<b>C</b>) roots.</p> "> Figure 2
<p>The morpho-physiological response of maize seedlings to –Zn, –Fe and –Fe–Zn deficiencies at 12 days after transplanting (DAT): (<b>A</b>) change in the chlorophyll content (soil plant analysis development (SPAD) value) of the leaves in response to the (<b>B</b>) transpiration rate; (<b>C</b>) stomatal conductance; (<b>D</b>) photosynthesis rate; (<b>E</b>) quantum efficiency of PS II photochemistry (Fv/Fm); and (<b>F</b>) root length (*, **, *** significant at <span class="html-italic">p</span> < 0.05, <span class="html-italic">p</span> < 0.01 and <span class="html-italic">p</span> < 0.001, respectively; NS: non-significant).</p> "> Figure 3
<p>The overview of the spatial transcriptome responses to Fe and Zn stresses in the maize inbred line of SKV616 seedlings. The genes showing > 2-fold expression under stress treatments and <span class="html-italic">p</span> < 0.05 are considered as differentially expressed genes (DEGs) in stress treatments as compared to the control: (<b>A</b>) total number of upregulated and downregulated genes in response to –Zn, –Fe and –Fe–Zn stresses in the root and shoot; and (<b>B</b>) the Venn diagram depicting the stress-specific and common DEGs in response to –Zn, –Fe and –Zn–Fe stresses in the root and shoot tissues.</p> "> Figure 4
<p>Functional gene ontology annotations of differentially expressed genes (DEGs) under Fe and Zn stresses in the root: (<b>A</b>) –Zn; (<b>B</b>) –Fe; and (<b>C</b>) –Fe–Zn. For graphical representation, we have the top 15 significant terms under each category <span class="html-italic">viz</span>., biological process (blue), cellular component (orange), and molecular function (green). The complete list of terms along with significance of false discovery rate (FDR) < 0.05 are mentioned in <a href="#app1-plants-09-01812" class="html-app">Table S1</a>.</p> "> Figure 5
<p>Functional gene ontology annotations of differentially expressed genes (DEGs) under Fe and Zn stresses in the shoot: (<b>A</b>)–Zn; (<b>B</b>)–Fe; and (<b>C</b>)–Fe–Zn. For graphical representation, we have the top 15 significant terms under each category <span class="html-italic">viz</span>., biological process (blue), cellular component (orange), and molecular function (green). The complete list of terms along with the significance of FDR < 0.05 are mentioned in the <a href="#app1-plants-09-01812" class="html-app">Table S1</a>.</p> "> Figure 6
<p>The clustering of KEGG-enriched functional categories of DEGs in the root and shoot under Fe and Zn stresses: (<b>A</b>) –Zn in root; (<b>B</b>) –Fe in root; (<b>C</b>) –Fe–Zn in the root; (<b>D</b>). –Zn in the shoot; (<b>E</b>) –Fe in shoot; and (<b>F</b>) –Fe–Zn in shoot.</p> "> Figure 7
<p>The transcription factors (TFs) and miRNAs mediated the regulation of differentially expressed transporters under Fe and Zn deficiency in maize: the regulatory network is characterized by 148 miRNA–target gene and 306 TF–target genes interactions. The green triangles represent the TFs, the red ovals represent the target transporters and mugineic acid pathway genes, and the blue diamonds represent miRNAs.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Morpho-Physiological Evidence for Fe and Zn Interaction
2.2. Maize Transcriptome Profiles in Response to Fe and Zn Deficiencies
2.3. Gene Ontology Assignments and KEGG Enrichment Analyses
2.4. Genes Expression in Response to Fe and Zn Deficiency
2.4.1. Mugineic Acid Pathway and Transporter Genes
2.4.2. Phytohormones
2.4.3. Photosynthesis and Carbohydrate Metabolism
2.5. Regulation and Interaction of Fe and Zn Transporters in Maize
3. Discussion
3.1. Fe and Zn Deficiencies Shifted the Expression Pattern of the Transcriptome in Root and Shoot
3.2. Fe and Zn Stresses Alter the Root Length via Differential Expression of Phytohormonal Genes
3.3. Fe and Zn Deficiency Affect Photosynthesis and Carbohydrate Metabolism Through Altered Expression of Key Genes
3.4. Differential Expression of Transporters under Fe and Zn Stresses in Maize
3.5. Hormonal Signalling and Homeostasis Networks Involved in the Fe and Zn Deficiency Regulatory Network
4. Materials and Methods
4.1. Plant Material and Stress Treatment
4.2. Morpho-Physiological Characterisation
4.3. Genome-Wide Expression Assay Using Affymetrix GeneChip Maize Genome Array
4.4. Microarray Data Analyses
4.5. Gene Ontology, KEGG Enrichment and Gene-Regulatory Network (GRN) Analyses
4.6. Validation and Expression Correlation of DEGs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability
References
- Mallikarjuna, M.G.; Thirunavukkarasu, N.; Hossain, F.; Bhat, J.S.; Jha, S.K.; Rathore, A.; Agrawal, P.K.; Pattanayak, A.; Reddy, S.S.; Gularia, S.K.; et al. Stability performance of inductively coupled plasma mass spectrometry-phenotyped kernel minerals concentration and grain yield in maize in different agro-climatic zones. PLoS ONE 2015, 10, e0139067. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, T.; Nozoye, T.; Nishizawa, N.K. Iron transport and its regulation in plants. Free Radic. Biol. Med. 2019, 133, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Gupta, H.S.; Hossain, F.; Nepolean, T.; Vignesh, M.; Mallikarjuna, M.G. Understanding genetic and molecular bases of Fe and Zn accumulation towards development of micronutrient-enriched maize. In Nutrient Use Efficiency: From Basics to Advances; Rakshit, A., Singh, H., Sen, A., Eds.; Springer India: New Delhi, India, 2015; pp. 255–282. ISBN 9788132221692. [Google Scholar]
- Clemens, S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta 2001, 212, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Römheld, V.; Marschner, H. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol. 1986, 80, 175–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higuchi, K.; Suzuki, K.; Nakanishi, H.; Yamaguchi, H.; Nishizawa, N.K.; Mori, S. Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol. 1999, 119, 471–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, M.; Yamaguchi, H.; Nakanishi, H.; Shioiri, T.; Nishizawa, N.K.; Mori, S. Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (strategy II) in graminaceous plants. Plant Physiol. 1999, 121, 947–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bashir, K.; Inoue, H.; Nagasaka, S.; Takahashi, M.; Nakanishi, H.; Mori, S.; Nishizawa, N.K. Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. J. Biol. Chem. 2006, 281, 32395–32402. [Google Scholar] [CrossRef] [Green Version]
- Kawakami, Y.; Bhullar, N.K. Molecular processes in iron and zinc homeostasis and their modulation for biofortification in rice. J. Integr. Plant Biol. 2018, 60, 1181–1198. [Google Scholar] [CrossRef]
- Nozoye, T.; Nagasaka, S.; Kobayashi, T.; Takahashi, M.; Sato, Y.; Sato, Y.; Uozumi, N.; Nakanishi, H.; Nishizawa, N.K. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J. Biol. Chem. 2011, 286, 5446–5454. [Google Scholar] [CrossRef] [Green Version]
- Nozoye, T.; Nagasaka, S.; Kobayashi, T.; Sato, Y.; Uozumi, N.; Nakanishi, H.; Nishizawa, N.K. The phytosiderophore efflux transporter TOM2 is involved in metal transport in rice. J. Biol. Chem. 2015, 290, 27688–27699. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhou, X.; Chen, J.; Chen, R. Is there a strategy I iron uptake mechanism in maize? Plant Signal. Behav. 2018, 13, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramesh, S.A. Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol. 2003, 133, 126–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hacisalihoglu, G. Zinc (Zn): The last nutrient in the alphabet and shedding light on zn efficiency for the future of crop production under suboptimal zn. Plants 2020, 9, 1471. [Google Scholar] [CrossRef] [PubMed]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: Cambridge, MA, USA, 1995; Volume 66, ISBN 9780124735439. [Google Scholar]
- Hacisalihoglu, G.; Hart, J.J.; Kochian, L.V. High- and low-affinity zinc transport systems and their possible role in zinc efficiency in bread wheat. Plant Physiol. 2001, 125, 456–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerinot, M. Lou The ZIP family of metal transporters. Biochim. Biophys. Acta Biomembr. 2000, 1465, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, R.; Bashir, K.; Ishimaru, Y.; Nishizawa, N.K.; Nakanishi, H. The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Plant Signal. Behav. 2012, 7, 1605–1607. [Google Scholar] [CrossRef]
- Ricachenevsky, F.K.; Menguer, P.K.; Sperotto, R.A.; Williams, L.E.; Fett, J.P. Roles of plant metal tolerance proteins (MTP) in metal storage and potential use in biofortification strategies. Front. Plant Sci. 2013, 4, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Gupta, N.; Ram, H.; Kumar, B. Mechanism of Zinc absorption in plants: Uptake, transport, translocation and accumulation. Rev. Environ. Sci. Biotechnol. 2016, 15, 89–109. [Google Scholar] [CrossRef]
- Zhang, F.S.; Römheld, V.; Marschner, H.; Zhang, F.S. Diurnal rhythm of release of phytosiderophores and uptake rate of zinc in iron-deficient wheat. Soil Sci. Plant Nutr. 1991, 37, 671–678. [Google Scholar] [CrossRef]
- Waters, B.M.; Chu, H.-H.; DiDonato, R.J.; Roberts, L.A.; Eisley, R.B.; Lahner, B.; Salt, D.E.; Walker, E.L. Mutations in arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiol. 2006, 141, 1446–1458. [Google Scholar] [CrossRef] [Green Version]
- Mallikarjuna, M.G.; Nepolean, T.; Mittal, S.; Hossain, F.; Bhat, J.S.; Manjaiah, K.M.; Marla, S.S.; Mithra, A.C.; Agrawal, P.K.; Rao, A.R.; et al. In-silico characterisation and comparative mapping of yellow stripe like transporters in five grass species. Indian J. Agric. Sci. 2016, 86, 721–727. [Google Scholar]
- Lin, Y.F.; Liang, H.M.; Yang, S.Y.; Boch, A.; Clemens, S.; Chen, C.C.; Wu, J.F.; Huang, J.L.; Yeh, K.C. Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytol. 2009, 182, 392–404. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Li, Y.; Liu, Z.; Tian, J.; Liang, L.; Qiu, Y.; Wang, G.; Du, Q.; Cheng, D.; Cai, H.; et al. A high activity zinc transporter OsZIP9 mediates zinc uptake in rice. Plant J. 2020, 103, 1695–1709. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Qu, M.; Zhu, Y.; Peng, C.; Wang, J.; Gao, D.; Chen, C. ZINC TRANSPORTER 5 and ZINC TRANSPORTER 9 function synergistically in zinc/cadmium uptake. Plant Physiol. 2020, 183, 1235–1249. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Sasaki, A.; Yamaji, N.; Okada, H.; Mitani-Ueno, N.; Ma, J.F. The ZIP transporter family member OsZIP9 contributes to root zinc uptake in rice under zinc-limited conditions. Plant Physiol. 2020, 183, 1224–1234. [Google Scholar] [CrossRef]
- Rogers, E.E.; Guerinot, M.L. FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in arabidopsis. Plant Cell 2002, 14, 1787–1799. [Google Scholar] [CrossRef] [Green Version]
- Inoue, H.; Takahashi, M.; Kobayashi, T.; Suzuki, M.; Nakanishi, H.; Mori, S.; Nishizawa, N.K. Identification and localisation of the rice nicotianamine aminotransferase gene OsNAAT1 expression suggests the site of phytosiderophore synthesis in rice. Plant Mol. Biol. 2008, 66, 193–203. [Google Scholar] [CrossRef]
- Curie, C.; Cassin, G.; Couch, D.; Divol, F.; Higuchi, K.; Le Jean, M.; Misson, J.; Schikora, A.; Czernic, P.; Mari, S. Metal movement within the plant: Contribution of nicotianamine and yellow stripe 1-like transporters. Ann. Bot. 2008, 103, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.C.; Chaney, R.L. Effect of iron on the transport of citrate into the xylem of soybeans and tomatoes. Plant Physiol. 1971, 47, 836–840. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Huang, F.; Narsai, R.; Wu, J.; Giraud, E.; He, F.; Cheng, L.; Wang, F.; Wu, P.; Whelan, J.; et al. Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings. Plant Physiol. 2009, 151, 262–274. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.J.W.; Lin, W.D.; Schmidt, W. Transcriptional profiling of the arabidopsis iron deficiency response reveals conserved transition metal homeostasis networks. Plant Physiol. 2010, 152, 2130–2141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Wang, N.; Zhao, F.; Song, X.; Yin, Z.; Huang, R.; Zhang, C. Changes in the transcriptomic profiles of maize roots in response to iron-deficiency stress. Plant Mol. Biol. 2014, 85, 349–363. [Google Scholar] [CrossRef] [PubMed]
- Zamboni, A.; Zanin, L.; Tomasi, N.; Avesani, L.; Pinton, R.; Varanini, Z.; Cesco, S. Early transcriptomic response to Fe supply in Fe-deficient tomato plants is strongly influenced by the nature of the chelating agent. BMC Genomics 2016, 17, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanin, L.; Venuti, S.; Zamboni, A.; Varanini, Z.; Tomasi, N.; Pinton, R. Transcriptional and physiological analyses of Fe deficiency response in maize reveal the presence of strategy I components and Fe/P interactions. BMC Genomics 2017, 18, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Mager, S.; Schönberger, B.; Ludewig, U. The transcriptome of zinc deficient maize roots and its relationship to DNA methylation loss. BMC Plant Biol. 2018, 18, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Garnica, M.; Bacaicoa, E.; Mora, V.; San Francisco, S.; Baigorri, R.; Zamarreño, A.M.; Garcia-Mina, J.M. Shoot iron status and auxin are involved in iron deficiency-induced phytosiderophores release in wheat. BMC Plant Biol. 2018, 18, 1–14. [Google Scholar] [CrossRef]
- García, M.J.; Suárez, V.; Romera, F.J.; Alcántara, E.; Pérez-Vicente, R. A new model involving ethylene, nitric oxide and Fe to explain the regulation of Fe-acquisition genes in strategy I plants. Plant Physiol. Biochem. 2011, 49, 537–544. [Google Scholar] [CrossRef]
- Zhou, M.L.; Qi, L.P.; Pang, J.F.; Zhang, Q.; Lei, Z.; Tang, Y.X.; Zhu, X.M.; Shao, J.R.; Wu, Y.M. Nicotianamine synthase gene family as central components in heavy metal and phytohormone response in maize. Funct. Integr. Genomics 2013, 13, 229–239. [Google Scholar] [CrossRef]
- Wu, J.; Wang, C.; Zheng, L.; Wang, L.; Chen, Y.; Whelan, J.; Shou, H. Ethylene is involved in the regulation of iron homeostasis by regulating the expression of iron-acquisition-related genes in Oryza sativa. J. Exp. Bot. 2011, 62, 667–674. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.W.; Yang, J.L.; Qin, C.; Jin, C.W.; Mo, J.H.; Ye, T.; Zheng, S.J. Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in arabidopsis. Plant Physiol. 2010, 154, 810–819. [Google Scholar] [CrossRef] [Green Version]
- García, M.J.; Lucena, C.; Romera, F.J.; Alcántara, E.; Pérez-Vicente, R. Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis. J. Exp. Bot. 2010, 61, 3885–3899. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Feng, F.; Liu, J.; Zhao, Q. The interaction between auxin and nitric oxide regulates root growth in response to iron deficiency in rice. Front. Plant Sci. 2017, 8, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Yue, R.; Yuan, C.; Liu, J.; Zhang, L.; Sun, T.; Yang, Y.; Tie, S.; Shen, C. Auxin signaling is involved in iron deficiency-induced photosynthetic inhibition and shoot growth defect in rice (Oryza sativa L.). J. Plant Biol. 2015, 58, 391–401. [Google Scholar] [CrossRef]
- Bouain, N.; Shahzad, Z.; Rouached, A.; Khan, G.A.; Berthomieu, P.; Abdelly, C.; Poirier, Y.; Rouached, H. Phosphate and zinc transport and signalling in plants: Toward a better understanding of their homeostasis interaction. J. Exp. Bot. 2014, 65, 5725–5741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conte, S.S.; Walker, E.L. Transporters contributing to iron trafficking in plants. Mol. Plant 2011, 4, 464–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balk, J.; Schaedler, T.A. Iron cofactor asembly in plants. Annu. Rev. Plant Biol. 2014, 65, 125–153. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, I.; Marschner, H.; Bangerth, F. Effect of zinc nutritional status on growth, protein metabolism and levels of indole-3-acetic acid and other phytohormones in bean (Phaseolus vulgaris L.). J. Exp. Bot. 1989, 40, 405–412. [Google Scholar] [CrossRef]
- Ivanchenko, M.G.; Muday, G.K.; Dubrovsky, J.G. Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana. Plant J. 2008, 55, 335–347. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, J.J.; Zhang, J.Z. Aux/IAA gene family in plants: Molecular structure, regulation, and function. Int. J. Mol. Sci. 2018, 19, 259. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, A.; Umemura, I.; Gomi, K.; Hasegawa, Y.; Kitano, H.; Sazuka, T.; Matsuoka, M. Production and characterization of auxin-insensitive rice by overexpression of a mutagenized rice IAA protein. Plant J. 2006, 46, 297–306. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Tang, Z.; Sun, X.; Zhang, H.; Yu, J.; Yao, G.; Li, G.; Guo, H.; Li, J.; et al. Gnp4/LAX2, a RAWUL protein, interferes with the OsIAA3–OsARF25 interaction to regulate grain length via the auxin signaling pathway in rice. J. Exp. Bot. 2018, 69, 4723–4737. [Google Scholar] [CrossRef] [PubMed]
- Arase, F.; Nishitani, H.; Egusa, M.; Nishimoto, N.; Sakurai, S.; Sakamoto, N.; Kaminaka, H. IAA8 involved in lateral root formation interacts with the TIR1 auxin receptor and ARF transcription factors in Arabidopsis. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, H.; Strader, L.C. Interplay of auxin and cytokinin in lateral root development. Int. J. Mol. Sci. 2019, 20, 486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Mo, X.; Shou, H.; Wu, P. Cytokinin-mediated cell cycling arrest of pericycle founder cells in lateral root initiation of arabidopsis. Plant Cell Physiol. 2006, 47, 1112–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werner, T.; Motyka, V.; Strnad, M.; Schmülling, T. Regulation of plant growth by cytokinin. Proc. Natl. Acad. Sci. USA 2001, 98, 10487–10492. [Google Scholar] [CrossRef] [Green Version]
- Werner, T.; Motyka, V.; Laucou, V.; Smets, R.; Van Onckelen, H.; Schmülling, T. Cytokinin-deficient transgenic arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 2003, 15, 2532–2550. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.; Ramireddy, E.; Schmülling, T. Cytokinin as a positional cue regulating lateral root spacing in Arabidopsis. J. Exp. Bot. 2015, 66, 4759–4768. [Google Scholar] [CrossRef] [Green Version]
- Mahonen, A.P. Cytokinin signaling and its inhibitor AHP6 regulate cell fate during cascular development. Science 2006, 311, 94–98. [Google Scholar] [CrossRef]
- Shi, Q.; Dong, Y.; Qiao, D.; Wang, Q.; Ma, Z.; Zhang, F.; Zhou, Q.; Xu, H.; Deng, F.; Li, Y. Isolation and characterization of ZmERF1 encoding ethylene responsive factor-like protein 1 in popcorn (Zea mays L.). Plant Cell Tissue Organ Cult. 2015, 120, 747–756. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, R. Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Mol. Biol. 2010, 73, 241–249. [Google Scholar] [CrossRef]
- Street, I.H.; Aman, S.; Zubo, Y.; Ramzan, A.; Wang, X.; Shakeel, S.N.; Kieber, J.J.; Eric Schaller, G. Ethylene inhibits cell proliferation of the arabidopsis root meristem. Plant Physiol. 2015, 169, 338–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaseva, I.I.; Qudeimat, E.; Potuschak, T.; Du, Y.; Genschik, P.; Vandenbussche, F.; Van Der Straeten, D. The plant hormone ethylene restricts Arabidopsis growth via the epidermis. Proc. Natl. Acad. Sci. USA 2018, 115, E4130–E4139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Zhao, Y.; Chu, H.; Wang, L.; Fu, Y.; Liu, P.; Upadhyaya, N.; Chen, C.; Mou, T.; Feng, Y.; et al. SHOEBOX modulates root meristem size in rice through dose-dependent effects of gibberellins on cell elongation and proliferation. PLoS Genet. 2015, 11, e1005464. [Google Scholar] [CrossRef] [PubMed]
- Shimada, A.; Ueguchi-Tanaka, M.; Nakatsu, T.; Nakajima, M.; Naoe, Y.; Ohmiya, H.; Kato, H.; Matsuoka, M. Structural basis for gibberellin recognition by its receptor GID1. Nature 2008, 456, 520–523. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wei, H.; Xue, Z.; Zhang, W.H. Gibberellins regulate iron deficiency-response by influencing iron transport and translocation in rice seedlings (Oryza sativa). Ann. Bot. 2017, 119, 945–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekimoto, H.; Hoshi, M.; Nomura, T.; Yokota, T. Zinc deficiency affects the levels of endogenous gibberellins in Zea mays L. Plant Cell Physiol. 1997, 38, 1087–1090. [Google Scholar] [CrossRef]
- Schöttler, M.A.; Tóth, S.Z.; Boulouis, A.; Kahlau, S. Photosynthetic complex stoichiometry dynamics in higher plants: Biogenesis, function, and turnover of ATP synthase and the cytochrome b6f complex. J. Exp. Bot. 2015, 66, 2373–2400. [Google Scholar] [CrossRef]
- Grouneva, I.; Gollan, P.J.; Kangasjärvi, S.; Suorsa, M.; Tikkanen, M.; Aro, E.M. Phylogenetic viewpoints on regulation of light harvesting and electron transport in eukaryotic photosynthetic organisms. Planta 2013, 237, 399–412. [Google Scholar] [CrossRef] [Green Version]
- Krohling, C.A.; Eutrópio, F.J.; Bertolazi, A.A.; Dobbss, L.B.; Campostrini, E.; Dias, T.; Ramos, A.C. Ecophysiology of iron homeostasis in plants. Soil Sci. Plant Nutr. 2016, 62, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Escudero-Almanza, D.J.; Ojeda-Barrios, D.L.; Hernández-Rodríguez, O.A.; Sánchez Chávez, E.; Ruíz-Anchondo, T.; Sida-Arreola, J.P. Carbonic anhydrase and zinc in plant physiology. Chil. J. Agric. Res. 2012, 72, 140–146. [Google Scholar] [CrossRef] [Green Version]
- Muneer, S.; Ryong, B. Silicon decreases Fe deficiency responses by improving photosynthesis and maintaining composition of thylakoid multiprotein complex proteins in soybean plants (Glycine max L.). J. Plant Growth Regul. 2015, 34, 485–498. [Google Scholar] [CrossRef]
- Andaluz, S.; López-Millán, A.-F.; De las Rivas, J.; Aro, E.-M.; Abadía, J.; Abadía, A. Proteomic profiles of thylakoid membranes and changes in response to iron deficiency. Photosynth. Res. 2006, 89, 141–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higuchi, K.; Saito, A.; Mikami, Y.; Miwa, E. Modulation of macronutrient metabolism in barley leaves under iron-deficient condition. Soil Sci. Plant Nutr. 2011, 57, 233–247. [Google Scholar] [CrossRef] [Green Version]
- López-Millán, A.F.; Grusak, M.A.; Abadía, A.; Abadía, J. Iron deficiency in plants: An insight from proteomic approaches. Front. Plant Sci. 2013, 4, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briat, J.F.; Curie, C.; Gaymard, F. Iron utilization and metabolism in plants. Curr. Opin. Plant Biol. 2007, 10, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Kesten, C.; Menna, A.; Sánchez-Rodríguez, C. Regulation of cellulose synthesis in response to stress. Curr. Opin. Plant Biol. 2017, 40, 106–113. [Google Scholar] [CrossRef]
- Kurek, I.; Kawagoe, Y.; Jacob-Wilk, D.; Doblin, M.; Delmer, D. Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains. Proc. Natl. Acad. Sci. USA 2002, 99, 11109–11114. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.Y.; Ye, Y.Q.; Fan, S.K.; Jin, C.W.; Zheng, S.J. Increased sucrose accumulation regulates iron-deficiency responses by promoting auxin signaling in Arabidopsis plants. Plant Physiol. 2016, 170, 907–920. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, T. Understanding the complexity of iron sensing and signaling cascades in plants. Plant Cell Physiol. 2019, 60, 1440–1446. [Google Scholar] [CrossRef]
- Nozoye, T. The nicotianamine synthase gene is a useful candidate for improving the nutritional qualities and Fe-deficiency tolerance of various crops. Front. Plant Sci. 2018, 9, 1–7. [Google Scholar] [CrossRef]
- Mizuno, D.; Higuchi, K.; Sakamoto, T.; Nakanishi, H.; Mori, S.; Nishizawa, N.K. Three nicotianamine synthase genes isolated from maize are differentially regulated by iron nutritional status. Plant Physiol. 2003, 132, 1989–1997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klatte, M.; Schuler, M.; Wirtz, M.; Fink-Straube, C.; Hell, R.; Bauer, P. The analysis of arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiol. 2009, 150, 257–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curie, C.; Alonso, J.M.; Le Jean, M.; Ecker, J.R.; Briat, J.F. Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem. J. 2000, 347, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Castaings, L.; Caquot, A.; Loubet, S.; Curie, C. The high-affinity metal transporters NRAMP1 and IRT1 team up to take up iron under sufficient metal provision. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, H.; Kobayashi, T.; Kakei, Y.; Senoura, T.; Nakazono, M.; Takahashi, H.; Nakanishi, H.; Shen, H.; Duan, P.; Guo, X.; et al. AhNRAMP1 iron transporter is involved in iron acquisition in peanut. J. Exp. Bot. 2012, 63, 4437–4446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, M.; Sharma, D.; Dwivedi, S.; Singh, M.; Tripathi, R.D.; Trivedi, P.K. Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance. Plant Cell Environ. 2014, 37, 140–152. [Google Scholar] [CrossRef]
- Rellán-Álvarez, R.; Giner-Martínez-Sierra, J.; Orduna, J.; Orera, I.; Rodríguez-Castrilln, J.Á.; García-Alonso, J.I.; Abadía, J.; Álvarez-Fernández, A. Identification of a tri-Iron(III), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron: New insights into plant iron long-distance transport. Plant Cell Physiol. 2010, 51, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Saridis, G.; Chorianopoulou, S.N.; Ventouris, Y.E.; Bouranis, D.L.; Sigalas, P.P. An exploration of the roles of ferric iron chelation-strategy components in the leaves and roots of maize plants. Plants 2019, 8, 133. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.C. Fe and Ca uptake as related to root-sap and stem-exudate citrate in soybeans. Physiol. Plant. 1966, 19, 968–976. [Google Scholar] [CrossRef]
- Lopez-Millan, A.F.; Morales, F.; Abadia, A.; Abadia, J. Effects of iron deficiency on the composition of the leaf apoplastic fluid and xylem sap in sugar beet. Implications for iron and carbon transport. Plant Physiol. 2000, 124, 873–884. [Google Scholar] [CrossRef] [Green Version]
- Ariga, T.; Hazama, K.; Yanagisawa, S.; Yoneyama, T. Chemical forms of iron in xylem sap from graminaceous and non-graminaceous plants. Soil Sci. Plant Nutr. 2014, 60, 460–469. [Google Scholar] [CrossRef] [Green Version]
- Salt, D.E.; Prince, R.C.; Baker, A.J.M.; Raskin, I.; Pickering, I.J. Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using x-ray absorption spectroscopy. Environ. Sci. Technol. 1999, 33, 713–717. [Google Scholar] [CrossRef]
- Yang, J.; Wang, M.; Li, W.; He, X.; Teng, W.; Ma, W.; Zhao, X.; Hu, M.; Li, H.; Zhang, Y.; et al. Reducing expression of a nitrate-responsive bZIP transcription factor increases grain yield and N use in wheat. Plant Biotechnol. J. 2019, 1, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, X.; Zhou, X.; Li, Y.; Yang, W.; Chen, R. Improving zinc and iron accumulation in maize grains using the zinc and iron transporter ZmZIP5. Plant Cell Physiol. 2019, 60, 2077–2085. [Google Scholar] [CrossRef]
- Thomine, S.; Lelièvre, F.; Debarbieux, E.; Schroeder, J.I.; Barbier-Brygoo, H. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. Plant J. 2003, 34, 685–695. [Google Scholar] [CrossRef]
- Lanquar, V.; Lelièvre, F.; Bolte, S.; Hamès, C.; Alcon, C.; Neumann, D.; Vansuyt, G.; Curie, C.; Schröder, A.; Krämer, U.; et al. Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J. 2005, 24, 4041–4051. [Google Scholar] [CrossRef]
- Barrieu, F.; Chaumont, F.; Chrispeels, M.J. High expression of the tonoplast aquaporin ZmTIP1 in epidermal and conducting tissues of maize. Plant Physiol. 1998, 117, 1153–1163. [Google Scholar] [CrossRef] [Green Version]
- Martinoia, E.; Maeshima, M.; Neuhaus, H.E. Vacuolar transporters and their essential role in plant metabolism. J. Exp. Bot. 2007, 58, 83–102. [Google Scholar] [CrossRef]
- Shen, C.; Yue, R.; Sun, T.; Zhang, L.; Yang, Y.; Wang, H. OsARF16, a transcription factor regulating auxin redistribution, is required for iron deficiency response in rice (Oryza sativa L.). Plant Sci. 2015, 231, 148–158. [Google Scholar] [CrossRef]
- Jagadeeswaran, G.; Li, Y.F.; Sunkar, R. Redox signaling mediates the expression of a sulfate-deprivation-inducible microRNA395 in arabidopsis. Plant J. 2014, 77, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Lewis, B.E.; Mason, Z.; Rodrigues, A.V.; Nuth, M.; Dizin, E.; Cowan, J.A.; Stemmler, T.L. Unique roles of iron and zinc binding to the yeast Fe-S cluster scaffold assembly protein “Isu1. ” Metallomics 2019, 11, 1820–1835. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.W.; Yang, Z.M. Identification of iron-deficiency responsive microRNA genes and cis-elements in Arabidopsis. Plant Physiol. Biochem. 2010, 48, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Thirugnanasambantham, K.; Durairaj, S.; Saravanan, S.; Karikalan, K.; Muralidaran, S.; Islam, V.I.H. Role of ethylene response transcription factor (ERF) and its regulation in response to stress encountered by plants. Plant Mol. Biol. Report. 2015, 33, 347–357. [Google Scholar] [CrossRef]
- Parry, G.; Estelle, M. Auxin receptors: A new role for F-box proteins. Curr. Opin. Cell Biol. 2006, 18, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Mallikarjuna, M.G.; Nepolean, T.; Hossain, F.; Manjaiah, K.M.; Singh, A.M.; Gupta, H.S. Genetic variability and correlation of kernel micronutrients among exotic quality protein maize inbreds and their utility in breeding programme. Indian J. Genet. Plant Breed. 2014, 74, 166–173. [Google Scholar] [CrossRef]
- Nozoye, T.; Nakanishi, H.; Nishizawa, N.K. Characterizing the crucial components of iron homeostasis in the maize mutants ys1 and ys3. PLoS ONE 2013, 8, e62567. [Google Scholar] [CrossRef] [Green Version]
- Brazma, A.; Hingamp, P.; Quackenbush, J.; Sherlock, G.; Spellman, P.; Stoeckert, C.; Aach, J.; Ansorge, W.; Ball, C.A.; Causton, H.C.; et al. Minimum information about a microarray experiment (MIAME) - Toward standards for microarray data. Nat. Genet. 2001, 29, 365–371. [Google Scholar] [CrossRef]
- Gentile, A.; Dias, L.I.; Mattos, R.S.; Ferreira, T.H.; Menossi, M. MicroRNAs and drought responses in sugarcane. Front. Plant Sci. 2015, 6, 58. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Irizarry, R.A.; Gentleman, R.; Martinez-Murillo, F.; Spencer, F. A model-based background adjustment for oligonucleotide expression arrays. J. Am. Stat. Assoc. 2004, 99, 909–917. [Google Scholar] [CrossRef] [Green Version]
- Kauffmann, A.; Gentleman, R.; Huber, W. arrayQualityMetrics - A bioconductor package for quality assessment of microarray data. Bioinformatics 2009, 25, 415–416. [Google Scholar] [CrossRef] [Green Version]
- Smyth, G.K. limma: Linear models for microarray data. In Bioinformatics and Computational Biology Solutions Using R and Bioconductor; Springer-Verlag: New York, NY, USA, 2005; pp. 397–420. ISBN 1431-8776. [Google Scholar]
- Tello-Ruiz, M.K.; Naithani, S.; Stein, J.C.; Gupta, P.; Campbell, M.; Olson, A.; Wei, S.; Preece, J.; Geniza, M.J.; Jiao, Y.; et al. Gramene 2018: Unifying comparative genomics and pathway resources for plant research. Nucleic Acids Res. 2018, 46, D1181–D1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, S.X.; Jung, D.; Jung, D.; Yao, R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Tian, F.; Yang, D.C.; Meng, Y.Q.; Kong, L.; Luo, J.; Gao, G. PlantTFDB 4.0: Toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 2017, 45, D1040–D1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, X.; Zhuang, Z.; Zhao, P.X. PsRNATarget: A plant small RNA target analysis server (2017 release). Nucleic Acids Res. 2018, 46, W49–W54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Idekar, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- IDT Server. Available online: https://www.idtdna.com (accessed on 10 April 2018).
- Thirunavukkarasu, N.; Hossain, F.; Mohan, S.; Shiriga, K.; Mittal, S.; Sharma, R.; Singh, R.K.; Gupta, H.S. Genome-wide expression of transcriptomes and their co-expression pattern in subtropical maize (Zea mays L.) under waterlogging stress. PLoS ONE 2013, 8, e70433. [Google Scholar] [CrossRef] [Green Version]
- Van Gioi, H.; Mallikarjuna, M.G.; Shikha, M.; Pooja, B.; Jha, S.K.; Dash, P.K.; Basappa, A.M.; Gadag, R.N.; Rao, A.R.; Nepolean, T. Variable level of dominance of candidate genes controlling drought functional traits in maize hybrids. Front. Plant Sci. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
S. No. | Gene Models | Probe ID | Fold Change | Annotation | |||||
---|---|---|---|---|---|---|---|---|---|
Root | Shoot | ||||||||
–Zn | –Fe | –Fe–Zn | –Zn | –Fe | –Fe–Zn | ||||
Transporters and Mugineic Acid Pathway | |||||||||
1 | GRMZM2G142870 | Zm.17901.1.S1_at | 2.09 | 1.18 | 15.46 | 1.93 | −0.74 | −1.21 | ABC transporter C family member 14 |
2 | GRMZM2G015295 | Zm.10189.1.A1_at | 2.10 | −1.23 | −9.12 | 1.25 | 7.51 | 30.81 | Adenosylhomocysteinase |
3 | GRMZM5G843141 | ZmAffx.1313.1.S1_s_at | 1.13 | 2.65 | −1.77 | 2.06 | 2.80 | 2.83 | ATP synthase subunit alpha (atp1-a2) |
4 | GRMZM2G036908 | Zm.15922.1.S1_at | −1.13 | −2.38 | 10.63 | 1.53 | −2.48 | −6.57 | Cation transmembrane transporter |
5 | GRMZM5G862882 | Zm.18006.1.A1_at | 2.14 | 3.71 | 7.69 | 2.03 | −1.37 | −6.30 | Cation transmembrane transporter |
6 | GRMZM2G064023 | Zm.5927.2.A1_a_at | 3.04 | 1.03 | 1.92 | −1.26 | 6.89 | 5.41 | Citrate synthase 2 |
7 | GRMZM2G157263 | Zm.3964.1.A1_a_at | 2.35 | 2.45 | 2.83 | 1.44 | 2.71 | 3.46 | Ferric-chelate reductase |
8 | GRMZM2G123486 | Zm.4621.1.A1_at | −4.04 | −3.91 | −3.58 | 1.17 | −1.07 | 2.00 | Heavy metal transport/detoxification superfamily protein |
9 | GRMZM2G178190 | Zm.13647.1.S1_at | −1.23 | 5.07 | 7.22 | −3.76 | 2.10 | −3.66 | Metal ion transmembrane transporter activity |
10 | GRMZM2G122437 | Zm.6067.2.A1_at | −2.54 | −2.33 | −14.22 | 1.59 | −1.34 | 9.14 | Metal ion transporter |
11 | GRMZM2G099340 | Zm.1356.2.S1_a_at | −1.40 | −3.90 | 7.20 | 2.74 | 2.15 | 2.99 | Metallothionein-like protein type 2 |
12 | GRMZM2G131473 | Zm.4989.1.A1_at | 1.85 | −1.05 | 1.48 | −1.23 | 6.14 | 8.11 | Methionine aminopeptidase |
13 | GRMZM2G015401 | Zm.198.1.S1_at | 2.78 | −1.45 | −1.93 | 1.08 | 3.46 | 10.28 | Mitochondrial phosphate transporter |
14 | GRMZM2G034956 | Zm.8336.1.S1_x_at | 1.02 | 4.98 | −1.29 | 1.06 | −1.01 | 1.97 | Nicotianamine synthase 1 |
15 | GRMZM2G050108 | Zm.9637.1.A1_at | 2.07 | −2.31 | 20.78 | 1.35 | −1.18 | −100.67 | Nicotianamine synthase 3 |
16 | GRMZM2G069198 | Zm.12619.1.A1_at | 3.15 | 1.56 | 7.28 | 2.34 | 3.38 | 1.67 | NRAMP transporter1 |
17 | GRMZM5G827496 | Zm.17744.1.A1_at | −2.58 | 1.07 | 10.36 | 1.20 | 3.93 | −14.55 | NRT1/ PTR family 3.1 |
18 | GRMZM2G567452 | Zm.10825.1.A2_at | 1.34 | 1.14 | 1.42 | 2.91 | 2.54 | 1.56 | O-methyltransferase |
19 | GRMZM2G148800 | Zm.19137.1.A1_at | −1.04 | 6.72 | 25.37 | −48.72 | −0.75 | −126.24 | Oligopeptide transmembrane transporter |
20 | GRMZM2G092125 | Zm.605.1.S1_a_at | 2.07 | −1.85 | −4.81 | −1.02 | 7.21 | 3.86 | Plasma membrane intrinsic protein 2 |
21 | GRMZM2G014914 | Zm.14436.1.A1_at | −1.70 | −1.45 | −1.61 | 1.37 | 18.02 | 8.85 | Plasma membrane intrinsic protein 2 |
22 | GRMZM2G099628 | Zm.15800.5.A1_a_at | 1.83 | −2.40 | −2.35 | −1.06 | 15.83 | 26.41 | Probable methionine-tRNA ligase |
23 | GRMZM2G104418 | Zm.12750.2.A1_x_at | 1.16 | −1.67 | −1.25 | 1.05 | 19.23 | 8.65 | Proton-transporting V-type ATPase, V0 domain |
24 | GRMZM2G070605 | Zm.14951.4.S1_at | 1.99 | 2.26 | 2.77 | −1.33 | 6.68 | 2.82 | S-adenosylmethionine decarboxylase proenzyme |
25 | GRMZM2G054123 | Zm.5785.1.S1_at | 1.15 | −1.17 | −1.57 | −1.32 | 3.92 | 9.42 | S-adenosylmethionine synthetase 1 |
26 | − | Zm.9197.1.A1_at | −2.23 | −1.61 | −2.50 | −1.16 | 6.86 | 3.34 | Tonoplast intrinsic protein 1 |
27 | GRMZM2G027098 | Zm.613.1.A1_at | −2.26 | −6.54 | −4.77 | 3.91 | 1.70 | 4.49 | Tonoplast intrinsic protein 2 |
28 | GRMZM2G056908 | Zm.614.1.A1_at | −2.27 | −9.93 | −636.10 | 1.62 | −1.29 | 120.97 | Tonoplast intrinsic protein 2 |
29 | GRMZM2G070360 | Zm.3314.2.A1_a_at | 1.91 | 1.44 | 2.89 | 1.18 | 21.50 | 6.22 | V-type proton ATPase subunit E3 |
30 | GRMZM2G094497 | Zm.6859.1.A1_at | 1.50 | 1.05 | 1.00 | −1.23 | 9.84 | 2.00 | Vacuolar ATP synthase subunit B |
31 | GRMZM2G421857 | Zm.6945.1.A1_at | 2.01 | −1.22 | 7.50 | −2.40 | 19.02 | 2.91 | Vacuolar proton pump 3 |
32 | GRMZM2G128995 | Zm.4630.2.A1_a_at | 1.48 | −1.32 | 1.43 | 1.24 | 11.89 | 7.92 | Vacuolar proton-transporting V-type ATPase, V1 domain |
33 | GRMZM2G126860 | Zm.12751.1.S1_at | 1.12 | −1.15 | 1.93 | −1.13 | 5.05 | 2.05 | Vacuolar sorting protein 4b |
34 | GRMZM2G067546 | Zm.3321.1.A1_a_at | 1.33 | 1.23 | 4.31 | 1.89 | 8.57 | 4.03 | Vacuolar sorting receptor homolog 1 |
35 | GRMZM2G156599 | Zm.582.1.S1_at | −2.12 | 8.55 | 35.45 | −10.90 | 2.09 | −38.26 | Yellow stripe 1 |
36 | GRMZM2G015955 | Zm.13452.2.A1_at | 1.64 | 1.26 | 10.59 | 3.62 | 1.19 | 1.39 | Zinc transporter 4 |
37 | GRMZM2G064382 | Zm.18511.1.S1_at | 5.53 | 1.15 | 3.85 | 8.72 | -1.82 | -4.10 | ZRT-IRT-like protein 5 |
Phytohormonal Metabolism | |||||||||
1 | GRMZM2G074267 | Zm.7858.1.A1_at | −1.25 | −3.48 | −5.35 | 1.26 | −1.50 | 3.40 | Auxin efflux carrier component PIN1bA: J |
2 | GRMZM2G427451 | Zm.16735.1.A1_at | 1.57 | −1.96 | −99.75 | −1.30 | 4.24 | 112.22 | Auxin induced in root cultures 12 |
3 | GRMZM2G035465 | Zm.2321.2.A1_a_at | 2.08 | 1.32 | 9.13 | 3.87 | 1.03 | −1.35 | Auxin-responsive protein |
4 | GRMZM2G077356 | Zm.4896.1.A1_at | 1.30 | −2.17 | −9.12 | 2.59 | 1.30 | 9.07 | Auxin-responsive Aux/IAA family member IAA 13 |
5 | GRMZM2G147243 | Zm.2321.3.A1_a_at | 1.80 | 1.19 | 10.43 | 1.40 | 41.19 | 11.45 | Auxin-responsive Aux/IAA family member IAA 17 |
6 | GRMZM2G115354 | Zm.7611.2.A1_at | 2.06 | −1.01 | 2.13 | 1.40 | 1.57 | −1.17 | Auxin-responsive Aux/IAA family member IAA 24 |
7 | GRMZM2G141903 | Zm.5181.2.A1_a_at | 2.39 | −1.23 | 5.46 | 1.15 | 10.64 | 6.42 | CK2 protein kinase alpha 2 |
8 | GRMZM2G050997 | Zm.9754.1.A1_at | 2.39 | −1.12 | 21.32 | −1.10 | 1.67 | −32.91 | Cytokinin oxidase 2 |
9 | GRMZM2G167220 | Zm.16971.1.A1_at | 1.00 | 2.01 | 11.57 | −3.13 | −1.09 | −23.68 | Cytokinin oxidase 3 |
10 | GRMZM2G167220 | Zm.16971.1.A1_s_at | 1.87 | 5.12 | 23.03 | −2.88 | −1.12 | −35.98 | Cytokinin oxidase 3 |
11 | GRMZM2G041699 | Zm.15533.1.S1_at | −1.54 | −2.01 | −1.93 | −4.77 | −2.15 | −5.99 | Cytokinin-O-glucosyltransferase 2 |
12 | GRMZM2G065694 | Zm.13139.1.A1_a_at | −1.11 | −2.27 | 3.40 | 1.17 | −1.58 | −4.02 | EREBP-4 like protein |
13 | GRMZM2G025062 | Zm.10181.1.A1_at | −4.27 | −8.86 | −8.92 | 1.85 | −1.23 | −1.07 | ERF-like protein |
14 | GRMZM2G102601 | Zm.14806.1.A1_at | 1.26 | −2.12 | 1.43 | 1.46 | 5.50 | 3.43 | Ethylene receptor |
15 | GRMZM2G052667 | Zm.6775.1.A1_at | 1.46 | 2.86 | 3.61 | 2.51 | 1.26 | −2.48 | Ethylene response factor |
16 | GRMZM2G053503 | Zm.11441.1.S1_at | −1.43 | −2.61 | −4.86 | −4.02 | −4.16 | −5.74 | Ethylene-responsive factor-like protein 1 |
17 | GRMZM5G831102 | Zm.8468.1.A1_at | −1.35 | −5.78 | −8.20 | 5.00 | −1.96 | 15.97 | Gibberellin receptor GID1L2 |
18 | GRMZM2G165901 | Zm.2157.6.S1_x_at | −1.25 | −1.50 | −17.02 | −1.34 | 13.02 | 8.67 | Responsive to abscisic acid 15 |
Photosynthesis and Carbohydrate Metabolism | |||||||||
1 | GRMZM2G448174 | ZmAffx.1483.1.S1_at | 1.81 | 1.28 | −3.47 | −1.27 | 15.00 | 2.92 | Apocytochrome f precursor |
2 | GRMZM2G385635 | ZmAffx.1092.1.A1_at | −1.47 | 4.19 | −2.34 | 1.29 | 2.32 | 4.10 | ATPase beta chain |
3 | GRMZM2G336448 | Zm.19239.1.A1_at | 1.13 | 4.22 | 2.12 | −4.79 | −1.33 | −8.81 | Carbohydrate transporter/sugar porter/transporter |
4 | GRMZM2G029219 | Zm.3331.1.A1_at | −1.49 | −2.28 | 24.02 | 2.81 | 5.37 | −2.63 | Carbohydrate transporter/sugar porter/transporter |
5 | GRMZM2G121878 | Zm.1079.1.A1_a_at | 6.24 | 1.16 | 804.18 | 3.14 | 13.05 | −129.47 | Carbonic anhydrase |
6 | GRMZM2G424832 | Zm.520.1.S1_x_at | −1.49 | −2.11 | −4.06 | 3.91 | −1.66 | 2.04 | Cellulose synthase 4 |
7 | GRMZM2G018241 | Zm.523.1.S1_at | −1.46 | −2.08 | −9.33 | 2.24 | −1.28 | 3.77 | Cellulose synthase 9 |
8 | GRMZM2G142898 | ZmAffx.5.1.S1_at | 1.11 | −1.77 | −7.57 | 2.07 | −1.84 | 2.85 | Cellulose synthase catalytic subunit 12 |
9 | GRMZM2G047513 | Zm.7289.1.A1_at | 1.00 | 1.14 | 5.87 | −1.57 | −4.78 | −32.62 | Chloroplast 30S ribosomal protein S10 |
10 | − | ZmAffx.1219.1.S1_s_at | 6.83 | 2.12 | −2.13 | 9.49 | 7.00 | 18.67 | Chlorophyll a-b binding protein 6A |
11 | GRMZM2G145460 | Zm.15915.1.S1_at | −1.10 | −1.42 | −2.38 | −1.78 | −7.22 | −5.92 | Chloroplast SRP54 receptor 1 |
12 | GRMZM2G064302 | Zm.14043.3.S1_a_at | 5.18 | 2.35 | −2.88 | 1.48 | 46.52 | 35.20 | Enolase 1 |
13 | GRMZM2G048371 | Zm.410.1.A1_at | 1.39 | −1.02 | −2.32 | −2.00 | 7.79 | 24.38 | Enolase 2 |
14 | GRMZM2G053458 | Zm.4.1.S1_at | 1.35 | 1.71 | −2.32 | −1.21 | 25.82 | 17.88 | Ferredoxin 3 |
15 | GRMZM2G106190 | Zm.136.1.S1_at | −1.24 | −8.66 | −2.28 | 3.47 | −1.50 | 3.73 | Ferredoxin 6, chloroplastic |
16 | GRMZM2G113325 | Zm.1691.1.S1_a_at | −1.38 | 2.35 | 20.44 | 1.12 | 1.11 | −9.52 | Ferrochelatase |
17 | GRMZM2G051004 | Zm.8992.2.A1_a_at | 2.86 | −1.56 | −4.31 | 1.06 | 3.41 | 34.02 | Glyceraldehyde-3-phosphate dehydrogenase |
18 | GRMZM2G415359 | Zm.5727.1.S1_a_at | 2.37 | −1.01 | 1.36 | 2.37 | 21.14 | 15.47 | Malate dehydrogenase 5 |
19 | GRMZM2G142873 | Zm.8962.1.A1_at | 2.55 | −1.15 | 3.49 | 1.40 | 4.29 | 1.20 | Opaque endosperm 5 |
20 | GRMZM2G065083 | Zm.3318.1.S1_at | 1.42 | −2.86 | 1.79 | −1.06 | 15.22 | 2.71 | Phosphohexose isomerase 1 |
21 | GRMZM2G382914 | Zm.6780.1.A1_a_at | −1.14 | −1.79 | −1.06 | −1.22 | 104.09 | 36.76 | Phosphoglycerate kinase |
22 | GRMZM2G382914 | Zm.6780.3.A1_x_at | −1.25 | −1.41 | −1.07 | −1.34 | 25.90 | 11.82 | Phosphoglycerate kinase |
23 | GRMZM2G076276 | Zm.15933.1.A1_at | 1.89 | −1.29 | −1.18 | 3.89 | 1.21 | 7.50 | Predicted polygalacturonate 4-alpha-galacturonosyltransferase |
24 | GRMZM2G165357 | Zm.730.3.A1_x_at | 1.70 | −1.53 | −4.90 | 1.49 | 3.50 | 11.60 | Predicted UDP-glucuronic acid decarboxylase 1 |
25 | GRMZM2G059151 | Zm.2422.1.A1_at | 1.17 | −1.49 | −2.16 | 2.07 | −1.53 | 3.21 | Pyrophosphate--fructose 6-phosphate 1-phosphotransferase subunit beta |
26 | GRMZM2G113033 | Zm.6763.4.S1_a_at | 1.56 | 2.39 | −1.09 | 1.87 | 520.30 | 27.36 | Ribulose bisphosphate carboxylase small subunit 2 |
27 | GRMZM2G095252 | Zm.3461.1.A1_a_at | 1.32 | −1.19 | 1.14 | −1.15 | 104.80 | 8.52 | RuBisCO large subunit-binding protein subunit beta |
28 | GRMZM5G875238 | Zm.26.1.A1_at | −1.24 | 2.96 | 308.21 | 9.08 | 3.65 | −31.29 | Sucrose phosphate synthase 1 |
29 | GRMZM2G140107 | Zm.18317.1.A1_at | 1.32 | 2.44 | 68.25 | −1.20 | 2.11 | −80.91 | Sucrose-phosphate synthase-like |
30 | GRMZM2G134256 | Zm.2199.1.A1_a_at | 2.15 | −1.08 | 2.35 | 2.03 | 5.68 | 3.10 | Transaldolase 2 |
31 | GRMZM2G030784 | Zm.3889.1.A1_at | 1.91 | 1.38 | −1.22 | 1.36 | 6.97 | 10.31 | Triosephosphate isomerase |
32 | GRMZM2G073725 | Zm.752.1.S1_a_at | 2.15 | −1.47 | −2.33 | −1.25 | 25.38 | 23.42 | UDP-arabinopyranose mutase 3 |
33 | GRMZM2G328500 | Zm.4986.1.S1_at | 1.14 | -3.00 | −4.23 | −1.80 | 5.47 | 11.70 | UDP-glucose 6-dehydrogenase |
34 | GRMZM5G862540 | Zm.4986.2.S1_at | 1.09 | −2.44 | −5.64 | −1.40 | 3.00 | 4.10 | UDP-glucose 6-dehydrogenase |
35 | GRMZM2G042179 | Zm.12322.1.A1_at | −1.17 | −3.17 | −1.08 | 2.18 | 2.30 | 3.02 | UDP-glucuronic acid 4-epimerase |
36 | GRMZM2G067707 | Zm.4793.1.S1_a_at | 2.99 | 1.35 | 1.49 | 1.32 | 22.03 | 24.99 | Ubiquinol-cytochrome c reductase complex |
37 | GRMZM5G833389 | Zm.5548.1.A1_x_at | 2.37 | −1.32 | −6.95 | −1.04 | 12.38 | 13.28 | 2,3-bisphosphoglycerate-independent phosphoglycerate mutase |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mallikarjuna, M.G.; Thirunavukkarasu, N.; Sharma, R.; Shiriga, K.; Hossain, F.; Bhat, J.S.; Mithra, A.C.; Marla, S.S.; Manjaiah, K.M.; Rao, A.; et al. Comparative Transcriptome Analysis of Iron and Zinc Deficiency in Maize (Zea mays L.). Plants 2020, 9, 1812. https://doi.org/10.3390/plants9121812
Mallikarjuna MG, Thirunavukkarasu N, Sharma R, Shiriga K, Hossain F, Bhat JS, Mithra AC, Marla SS, Manjaiah KM, Rao A, et al. Comparative Transcriptome Analysis of Iron and Zinc Deficiency in Maize (Zea mays L.). Plants. 2020; 9(12):1812. https://doi.org/10.3390/plants9121812
Chicago/Turabian StyleMallikarjuna, Mallana Gowdra, Nepolean Thirunavukkarasu, Rinku Sharma, Kaliyugam Shiriga, Firoz Hossain, Jayant S Bhat, Amitha CR Mithra, Soma Sunder Marla, Kanchikeri Math Manjaiah, AR Rao, and et al. 2020. "Comparative Transcriptome Analysis of Iron and Zinc Deficiency in Maize (Zea mays L.)" Plants 9, no. 12: 1812. https://doi.org/10.3390/plants9121812
APA StyleMallikarjuna, M. G., Thirunavukkarasu, N., Sharma, R., Shiriga, K., Hossain, F., Bhat, J. S., Mithra, A. C., Marla, S. S., Manjaiah, K. M., Rao, A., & Gupta, H. S. (2020). Comparative Transcriptome Analysis of Iron and Zinc Deficiency in Maize (Zea mays L.). Plants, 9(12), 1812. https://doi.org/10.3390/plants9121812