Impact of Colletotrichum acutatum Pathogen on Olive Phenylpropanoid Metabolism
<p>Relative gene expression of <span class="html-italic">phenylalanine ammonia-lyase</span> (<span class="html-italic">PAL</span>) of phenylpropanoid pathway by quantitative polymerase chain reaction (qPCR) in developing (green, semi-ripe, and ripe stage) and infected fruits (non-infected fruit (control), 0, 16, 48, and 144 h after <span class="html-italic">C. acutatum</span> inoculation (hai)), from susceptible cv. Galega; moderate-tolerant cv. Cobrançosa, and tolerant cv. Picual cultivars during two crop years (2016 and 2017). Bars indicate standard error of three biological replicates at each sampling time point within cultivars and data were subjected to analysis of variance (ANOVA) and multiple range test (Tukey’s test) with a significance of <span class="html-italic">p</span> < 0.05.</p> "> Figure 2
<p>Activity of PAL enzyme in developing (green, semi-ripe, and ripe stage) and infected fruits (non-infected fruit (control), 0, 16, 48, and 144 h after <span class="html-italic">C. acutatum</span> inoculation (hai)), from susceptible cv. Galega; moderate-tolerant cv. Cobrançosa, and tolerant cv. Picual cultivars during two crop years (2016 and 2017). Bars indicate standard error of three biological replicates at each sampling time point within cultivars and data were subjected to analysis of variance (ANOVA) and multiple range test (Tukey’s test) with a significance of <span class="html-italic">p</span> < 0.05.</p> "> Figure 3
<p>Total phenolic composition in developing (green, semi-ripe, and ripe stage) and infected olive fruit samples (non-infected fruit (control), 0, 16, 48, and 144 h after <span class="html-italic">C. acutatum</span> inoculation (hai)), from susceptible cv. Galega Vulgar; moderate-tolerant cv. Cobrançosa, and tolerant cv. Picual during two crop years (2016 and 2017). Bars indicate standard error of three biological replicates at each sampling time point within cultivars and data were subjected to analysis of variance (ANOVA) and multiple range test (Tukey’s test) with a significance of <span class="html-italic">p</span> < 0.05.</p> "> Figure 4
<p><span class="html-italic">Ortho</span>-diphenols content in developing (green, semi-ripe, and ripe stage) and infected olive fruits (non-infected fruit (control), 0, 16, 48, and 144 h after <span class="html-italic">C. acutatum</span> inoculation (hai)), from susceptible cv. Galega; moderate-tolerant cv. Cobrançosa, and tolerant cv. Picual during two crop years (2016 and 2017). Bars indicate standard error of three biological replicates at each sampling time point within cultivars and data were subjected to analysis of variance (ANOVA) and multiple range test (Tukey’s test) with a significance of <span class="html-italic">p</span> < 0.05.</p> "> Figure 5
<p>Flavonoids content in developing (green, semi-ripe, and ripe stage) and infected olive fruits (non-infected fruit (control), 0, 16, 48, and 144 h after <span class="html-italic">C. acutatum</span> inoculation (hai)), from susceptible cv. Galega; moderate-tolerant cv. Cobrançosa, and tolerant cv. Picual during two crop years (2016 and 2017). Bars indicate standard error of three biological replicates at each sampling time point within cultivars and data were subjected to analysis of variance (ANOVA) and multiple range test (Tukey’s test) with a significance of <span class="html-italic">p</span> < 0.05.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Preparation of C. acutatum Isolates, Plant Inoculation and Sampling
2.3. Real-Time Polymerase Chain Reaction (PCR) Assay
2.3.1. Total RNA Isolation
2.3.2. Reverse Transcription−Quantitative Real-Time Polymerase Chain Reaction (qRT–pCR)
2.4. Quantification of Phenylpropanoid Compounds
2.4.1. Extraction and L-Phenylalanine Ammonia-Lyase (PAL) Activity Assay
2.4.2. Phenolic Fraction Extraction
2.4.3. Phenolic Composition
2.5. Statistical Analysis
3. Results
3.1. OePAL Gene Transcript Levels during Fruit Development and C. acutatum Infection
3.2. PAL Enzyme Activity during Fruit Development and upon C. acutatum Infection
3.3. Evaluation of Phenolics, Ortho-Diphenols, and Flavonoids during Olive Fruits Development and C. acutatum Infection
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Moral, J.; Trapero, A. Assessing the Susceptibility of Olive Cultivars to Anthracnose Caused by Colletotrichum acutatum. Plant Dis. 2009, 93, 1028–1036. [Google Scholar] [CrossRef] [PubMed]
- Talhinhas, P.; Sreenivasaprasad, S.; Neves-Martins, J.; Oliveira, H. Molecular and Phenotypic Analyses Reveal Association of Diverse Colletotrichum acutatum Groups and a Low Level of C. gloeosporioides with Olive Anthracnose. Appl. Environ. Microbiol. 2005, 71, 2987–2998. [Google Scholar] [CrossRef] [PubMed]
- Trapero, A.; Blanco, M.A. Enfermedades. In El Cultivo de Olivo; Barranco, D., Fernández-Escobar, R., Rallo, L., Eds.; Mundi-Prensa: Madrid, Spain, 2008; pp. 557–614. ISBN 9788484767145. [Google Scholar]
- Cacciola, S.O.; Faedda, R.; Sinatra, F.; Agosteo, G.E.; Schena, L.; Frisullo, S.; Magnano di San Lio, G. Olive Anthracnose. J. Plant Pathol. 2012, 94, 29–44. [Google Scholar]
- Leyva-Pérez, M.D.L.O.; Jiménez-Ruiz, J.; Gómez-Lama Cabanás, C.; Valverde-Corredor, A.; Barroso, J.B.; Luque, F.; Mercado-Blanco, J. Tolerance of olive (Olea europaea) cv Frantoio to Verticillium dahliae relies on both basal and pathogen-induced differential transcriptomic responses. New Phytol. 2018, 217, 671–686. [Google Scholar] [CrossRef] [PubMed]
- Moral, J.; Alsalimiya, M.; Roca, L.F.; Díez, C.M.; León, L.; de la Rosa, R.; Barranco, D.; Rallo, L.; Trapero, A. Relative Susceptibility of New Olive Cultivars to Spilocaea oleagina, Colletotrichum acutatum, and Pseudocercospora cladosporioides. Plant Dis. 2015, 99, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.T.; Piteira, M.C.C.; Clara, M.I.E. Identificação de Colletotrichum acutatum em Olea europaea afectada pela doença da gafa. In Proceedings of the III Simpósio Nacional de Olivicultura-Revista de Ciências Agrárias, Castelo Branco, Portugal, 29–31 October 2013. [Google Scholar]
- Gomes, S.; Prieto, P.; Martins-Lopes, P.; Carvalho, T.; Martin, A.; Guedes-Pinto, H. Development of Colletotrichum acutatum on Tolerant and Susceptible Olea europaea L. cultivars: A Microscopic Analysis. Mycopathologia 2009, 168, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Moral, J.; Bouhmidi, K.; Trapero, A. Influence of Fruit Maturity, Cultivar Susceptibility, and Inoculation Method on Infection of Olive Fruit by Colletotrichum acutatum. Plant Dis. 2008, 92, 1421–1426. [Google Scholar] [CrossRef]
- Talhinhas, P.; Loureiro, A.; Oliveira, H. Olive anthracnose: A yield-and oil quality-degrading disease caused by several species of Colletotrichum that differ in virulence, host preference and geographical distribution. Mol. Plant Pathol. 2018, 19, 1797–1807. [Google Scholar] [CrossRef]
- Amaral, J.S.; Mafra, I.; Oliveira, M.B.P.P. Characterization of Three Portuguese Varietal Olive Oils Based on Fatty Acids, Triacylglycerols, Phytosterols and Vitamin E Profiles. In Olives and Olive Oil in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2010; pp. 581–589. [Google Scholar]
- Moral, J.; Xaviér, C.J.; Viruega, J.R.; Roca, L.F.; Caballero, J.; Trapero, A. Variability in Susceptibility to Anthracnose in the World Collection of Olive Cultivars of Cordoba (Spain). Front. Plant Sci. 2017, 8, 1892. [Google Scholar] [CrossRef]
- Jiménez-Ruiz, J.; Leyva-Pérez, M.D.L.O.; Schilirò, E.; Barroso, J.B.; Bombarely, A.; Mueller, L.; Mercado-Blanco, J.; Luque, F. Transcriptomic Analysis of L. Roots during the Early Infection Process. Plant Genome 2017, 10. [Google Scholar] [CrossRef] [PubMed]
- Bhadauria, V.; Banniza, S.; Wang, L.-X.; Wei, Y.-D.; Peng, Y.-L. Proteomic studies of phytopathogenic fungi, oomycetes and their interactions with hosts. Eur. J. Plant Pathol. 2010, 126, 81–95. [Google Scholar] [CrossRef]
- Gomes, S.; Bacelar, E.; Martins-Lopes, P.; Carvalho, T.; Guedes-Pinto, H. Infection Process of Olive Fruits by Colletotrichum acutatum and the Protective Role of the Cuticle and Epidermis. J. Agric. Sci. 2012, 4, 101. [Google Scholar] [CrossRef]
- Mithfer, A.; Boland, W.; Maffei, M.E. Chemical Ecology of Plant–Insect Interactions. In Molecular Aspects of Plant Disease Resistance; Wiley-Blackwell: Oxford, UK, 2008; pp. 261–291. [Google Scholar]
- Truman, W.; Zabala, M.T.; Grant, M. Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance. Plant J. 2006, 46, 14–33. [Google Scholar] [CrossRef] [PubMed]
- Anand, T.; Bhaskaran, R.; Raguchander, T.; Samiyappan, R.; Prakasam, V.; Gopalakrishnan, C. Defence responses of chilli fruits to Colletotrichum capsici and Alternaria alternata. Biol. Plant. 2009, 53, 553–559. [Google Scholar] [CrossRef]
- Dixon, R.A. Natural products and plant disease resistance. Nature 2001, 411, 843–847. [Google Scholar] [CrossRef] [PubMed]
- Guidarelli, M.; Carbone, F.; Mourgues, F.; Perrotta, G.; Rosati, C.; Bertolini, P.; Baraldi, E. Colletotrichum acutatum interactions with unripe and ripe strawberry fruits and differential responses at histological and transcriptional levels. Plant Pathol. 2011, 60, 685–697. [Google Scholar] [CrossRef]
- Montesano, M.; Brader, G.; Palva, E.T. Pathogen derived elicitors: Searching for receptors in plants. Mol. Plant Pathol. 2003, 4, 73–79. [Google Scholar] [CrossRef]
- Salazar, S.M.; Castagnaro, A.P.; Arias, M.E.; Chalfoun, N.; Tonello, U.; Díaz Ricci, J.C. Induction of a defense response in strawberry mediated by an avirulent strain of Colletotrichum. Eur. J. Plant Pathol. 2007, 117, 109–122. [Google Scholar] [CrossRef]
- Shan, X.C.; Goodwin, P.H. Reorganization of Filamentous Actin in Nicotiana benthamiana Leaf Epidermal Cells Inoculated with Colletotrichum destructivum and Colletotrichum graminicola. Int. J. Plant Sci. 2005, 166, 31–39. [Google Scholar] [CrossRef]
- Tonnessen, B.W.; Manosalva, P.; Lang, J.M.; Baraoidan, M.; Bordeos, A.; Mauleon, R.; Oard, J.; Hulbert, S.; Leung, H.; Leach, J.E. Rice phenylalanine ammonia-lyase gene OsPAL4 is associated with broad spectrum disease resistance. Plant Mol. Biol. 2015, 87, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Zipfel, C. Pattern-recognition receptors in plant innate immunity. Curr. Opin. Immunol. 2008, 20, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Bowles, D.J. Defense-Related Proteins in Higher Plants. Annu. Rev. Biochem. 1990, 59, 873–907. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Chacón, A.L.; Camperos-Reyes, J.E.; Ávila Diazgranados, R.A.; Romero, H.M. Biochemical and physiological responses of oil palm to bud rot caused by Phytophthora palmivora. Plant Physiol. Biochem. 2013, 70, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Alagna, F.; Mariotti, R.; Panara, F.; Caporali, S.; Urbani, S.; Veneziani, G.; Esposto, S.; Taticchi, A.; Rosati, A.; Rao, R.; et al. Olive phenolic compounds: Metabolic and transcriptional profiling during fruit development. BMC Plant Biol. 2012, 12, 162. [Google Scholar] [CrossRef] [PubMed]
- Gouvinhas, I.; Machado, N.; Sobreira, C.; Domínguez-Perles, R.; Gomes, S.; Rosa, E.; Barros, A. Critical Review on the Significance of Olive Phytochemicals in Plant Physiology and Human Health. Molecules 2017, 22, 1986. [Google Scholar] [CrossRef] [PubMed]
- Cheynier, V.; Comte, G.; Davies, K.M.; Lattanzio, V.; Martens, S. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem. 2013, 72, 1–20. [Google Scholar] [CrossRef]
- Naqvi, S.H.; Dahot, M.U.; Rafiq, M.; Khan, M.Y.; Ibrahim, I.; Lashari, K.H.; Ali, A.; Korai, A.L. Anti-microbial efficacy and biochemical analysis from different parts of Acacia nilotica L. and Ricinus communis L. extracts. J. Med. Plants Res. 2011, 5, 6299–6308. [Google Scholar] [CrossRef]
- Reimers, P.J.; Leach, J.E. Race-specific resistance to Xanthomonas oryzae pv. oryzae conferred by bacterial blight resistance gene Xa-10 in rice (Oryza sativa) involves accumulation of a lignin-like substance in host tissues. Physiol. Mol. Plant Pathol. 1991, 38, 39–55. [Google Scholar] [CrossRef]
- Schovánková, J.; Opatová, H. Changes in phenols composition and activity of phenylalanine-ammonia lyase in apples after fungal infections. Hortic. Sci. 2011, 38, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Tovar, M.J.; Romero, M.P.; Girona, J.; Motilva, M.J. L-Phenylalanine ammonia-lyase activity and concentration of phenolics in developing olive (Olea europaea L. cv Arbequina) fruit grown under different irrigation regimes. J. Sci. Food Agric. 2002, 82, 892–898. [Google Scholar] [CrossRef]
- Agudelo-Romero, P.; Erban, A.; Rego, C.; Carbonell-Bejerano, P.; Nascimento, T.; Sousa, L.; Martínez-Zapater, J.M.; Kopka, J.; Fortes, A.M. Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea. J. Exp. Bot. 2015, 66, 1769–1785. [Google Scholar] [CrossRef] [PubMed]
- Alkan, N.; Fortes, A.M. Insights into molecular and metabolic events associated with fruit response to post-harvest fungal pathogens. Front. Plant Sci. 2015, 6, 889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermoso Fernández, M.; Gonzélez Delgado, J.; Uceda Ojeda, M.; García-Ortiz Rodríguez, Á.; Morales Bernardino, J.; Frías Ruiz, L.; Fernández García, Á. Elaboración de Aceite de Oliva de Calidad. Obtención por el Sistema de Dos Fases, 3rd ed.; Junta de Andalucía–Consejería de Agricultura y Pesca, Ed.; VICECONCEJERÍA: Sevilla, Spain, 1991; ISBN 84-89802-37-8. [Google Scholar]
- Gomes, S.; Martins-Lopes, P.; Bacelar, E.; Guedes-Pinto, H. An integrated functional genomic approach in the Olea europaea L.–Colletotrichum acutatum pathosystem. J. Biotechnol. 2010, 150, 503. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- McCallum, J.A.; Walker, J.R.L. Phenolic biosynthesis during grain development in wheat: Changes in phenylalanine Ammonia-lyase activity and soluble phenolic content. J. Cereal Sci. 1990, 11, 35–49. [Google Scholar] [CrossRef]
- Machado, M.; Felizardo, C.; Fernandes-Silva, A.A.; Nunes, F.M.; Barros, A. Polyphenolic compounds, antioxidant activity and l-phenylalanine ammonia-lyase activity during ripening of olive cv. “Cobrançosa” under different irrigation regimes. Food Res. Int. 2013, 51, 412–421. [Google Scholar] [CrossRef]
- Gouvinhas, I.; Domínguez-Perles, R.; Gironés-Vilaplana, A.; Carvalho, T.; Machado, N.; Barros, A. Kinetics of the Polyphenolic Content and Radical Scavenging Capacity in Olives through On-Tree Ripening. J. Chem. 2017, 2017, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Barros, A.I.; Freire, I.; Gonçalves, B.; Bacelar, E.; Gomes, S.; Lopes, J.; Guedes-Pinto, H.; Martins-Lopes, P. Evaluation of chemical and phenotypic changes in Blanqueta, Cobrançosa, and Galega during olive fruits ripening. CyTA–J. Food 2013, 11, 136–141. [Google Scholar] [CrossRef]
- Morelló, J.-R.; Romero, M.-P.; Ramo, T.; Motilva, M.-J. Evaluation of l-phenylalanine ammonia-lyase activity and phenolic profile in olive drupe (Olea europaea L.) from fruit setting period to harvesting time. Plant Sci. 2005, 168, 65–72. [Google Scholar] [CrossRef]
- Ortega-García, F.; Peragón, J. Phenylalanine Ammonia-Lyase, Polyphenol Oxidase, and Phenol Concentration in Fruits of Olea europaea L. cv. Picual, Verdial, Arbequina, and Frantoio during Ripening. J. Agric. Food Chem. 2009, 57, 10331–10340. [Google Scholar] [CrossRef] [PubMed]
- Carbone, F.; Preuss, A.; DE Vos, R.C.H.; D’amico, E.; Perrotta, G.; Bovy, A.G.; Martens, S.; Rosati, C. Developmental, genetic and environmental factors affect the expression of flavonoid genes, enzymes and metabolites in strawberry fruits. Plant. Cell Environ. 2009, 32, 1117–1131. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.W.; Breen, P.J. Activity of Phenylalanine Ammonia-Lyase (PAL) and Concentrations of Anthocyanins and Phenolics in Developing Strawberry Fruit. J. Am. Soc. Hortic. Sci. 1991, 116, 865–869. [Google Scholar] [CrossRef]
- Gouvinhas, I.; Machado, N.; Gironés-Vilaplana, A.; Gomes, S.; Carvalho, T.; Domínguez-Perles, R.; Barros, A.I.R.N.A. Sorting out the value of spectroscopic tools to assess the Colletotrichum acutatum impact in olive cultivars with different susceptibilities. J. Chemom. 2016, 30, 548–558. [Google Scholar] [CrossRef]
- Goetz, G.; Fkyerat, A.; Métais, N.; Kunz, M.; Tabacchi, R.; Pezet, R.; Pont, V. Resistance factors to grey mould in grape berries: Identification of some phenolics inhibitors of Botrytis cinerea stilbene oxidase. Phytochemistry 1999, 52, 759–767. [Google Scholar] [CrossRef]
- Ockels, F.S.; Eyles, A.; McPherson, B.A.; Wood, D.L.; Bonello, P. Phenolic Chemistry of Coast Live Oak Response to Phytophthora ramorum Infection. J. Chem. Ecol. 2007, 33, 1721–1732. [Google Scholar] [CrossRef] [PubMed]
- Wallis, C.; Eyles, A.; Chorbadjian, R.; McSpadden Gardener, B.; Hansen, R.; Cipollini, D.; Herms, D.A.; Bonello, P. Systemic induction of phloem secondary metabolism and its relationship to resistance to a canker pathogen in Austrian pine. New Phytol. 2008, 177, 767–778. [Google Scholar] [CrossRef] [PubMed]
- Gouvinhas, I.; de Almeida, J.M.M.M.; Carvalho, T.; Machado, N.; Barros, A.I.R.N.A. Discrimination and characterisation of extra virgin olive oils from three cultivars in different maturation stages using Fourier transform infrared spectroscopy in tandem with chemometrics. Food Chem. 2015, 174, 226–232. [Google Scholar] [CrossRef] [Green Version]
- Curvers, K.; Seifi, H.; Mouille, G.; de Rycke, R.; Asselbergh, B.; Van Hecke, A.; Vanderschaeghe, D.; Höfte, H.; Callewaert, N.; Van Breusegem, F.; et al. Abscisic Acid Deficiency Causes Changes in Cuticle Permeability and Pectin Composition That Influence Tomato Resistance to Botrytis cinerea. Plant Physiol. 2010, 154, 847–860. [Google Scholar] [CrossRef]
- Bassolino, L.; Zhang, Y.; Schoonbeek, H.; Kiferle, C.; Perata, P.; Martin, C. Accumulation of anthocyanins in tomato skin extends shelf life. New Phytol. 2013, 200, 650–655. [Google Scholar] [CrossRef] [Green Version]
- Slatnar, A.; Mikulic Petkovsek, M.; Halbwirth, H.; Stampar, F.; Stich, K.; Veberic, R. Enzyme activity of the phenylpropanoid pathway as a response to apple scab infection. Ann. Appl. Biol. 2010, 156, 449–456. [Google Scholar] [CrossRef]
- Schwalb, P.; Feucht, W. Changes in the concentration of phenolic substances in the bark during the annual development of the cherry tree (Prunus avium L.). Adv. Hortic. Sci. 1999, 13, 71–75. [Google Scholar]
- Usenik, V.; Mikuli-Petkovšek, M.; Solar, A.; Štampar, F. Flavonols of leaves in relation to apple scab resistance. J. Plant Dis. Prot. 2004, 111, 137–144. [Google Scholar] [CrossRef]
- Prusky, D.; Kobiler, I.; Ardi, R.; Beno-Moalem, D.; Yakoby, N.; Keen, N.T. Resistance Mechanisms of Subtropical Fruits to Colletotrichum gloeosporioides. In Colletotrichum: Host Specificity, Pathology, and Host-Pathogen Interaction; Prusky, D., Freeman, S., Dickman, M., Eds.; The American Phytopathological Society: St. Paul, MN, USA, 2000; pp. 232–244. ISBN 978-0-89054-258-3. [Google Scholar]
- Mayr, U.; Michalek, S.; Treutter, D.; Feucht, W. Phenolic Compounds of Apple and their Relationship to Scab Resistance. J. Phytopathol. 1997, 145, 69–75. [Google Scholar] [CrossRef]
- Michalek, S.; Mayr, U.; Treutter, D.; Lux-Endrich, A.; Gutmann, M.; Feucht, W.; Geibel, M. Role of Flavan-3-ols in resistance of apple trees to Venturia inaequalis. Acta Hortic. 1998, 484, 535–540. [Google Scholar] [CrossRef]
- Walker, J.C.; Stahmann, M.A. Chemical Nature of Disease Resistance in Plants. Annu. Rev. Plant Physiol. 1955, 6, 351–366. [Google Scholar] [CrossRef]
- Del Río, J. Enhancement of phenolic compounds in olive plants (Olea europaea L.) and their influence on resistance against Phytophthora sp. Food Chem. 2003, 83, 75–78. [Google Scholar] [CrossRef]
- Kim, D.S.; Hwang, B.K. An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. J. Exp. Bot. 2014, 65, 2295–2306. [Google Scholar] [CrossRef] [Green Version]
Cultivar | Ripening Index | Hours after Infection in Ripe Fruits (hai) | Susceptibility to Colletotrichum acutatum |
---|---|---|---|
Galega Vulgar | Green (RI = 1.30) Semi-ripe (RI = 2.74) Ripe (RI = 4.87) | Control (non-infected fruits) | Susceptible |
0 | |||
16 | |||
48 | |||
144 | |||
Cobrançosa | Green (RI = 1.30) Semi-ripe (RI = 2.96) Ripe (RI = 4.67) | Control (non-infected fruits) | Moderate-Tolerant |
0 | |||
16 | |||
48 | |||
144 | |||
Picual | Green (RI = 0.8) Semi-ripe (RI = 2.43) Ripe (RI = 4.57) | Control (non-infected fruits) | Tolerant |
0 | |||
16 | |||
48 | |||
144 | |||
RI = Ripening Index |
Gene | Accession Number | Primer | Sequence (5′–3′) | Amplicon Size (bp) | Annealing Temperature (°C) |
---|---|---|---|---|---|
ACT | AF545569 | Sense | AGCTTGCTTATGTTGCTCTC | 169 | 59 |
Antisense | GATTCCATTCCAATCAAAGA | ||||
GAPDH | EF506494 | Sense | TTCTGCAACGATAGACTCCT | 224 | 59 |
Antisense | AAGCTTCGTAAACTTTGCAC | ||||
PAL | KJ511868 | Sense | CATTGAAAGGTAGCCATCTA | 101 | 59 |
Antisense | CTAGCAAATTGGAAGAGGTT |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gouvinhas, I.; Martins-Lopes, P.; Carvalho, T.; Barros, A.; Gomes, S. Impact of Colletotrichum acutatum Pathogen on Olive Phenylpropanoid Metabolism. Agriculture 2019, 9, 173. https://doi.org/10.3390/agriculture9080173
Gouvinhas I, Martins-Lopes P, Carvalho T, Barros A, Gomes S. Impact of Colletotrichum acutatum Pathogen on Olive Phenylpropanoid Metabolism. Agriculture. 2019; 9(8):173. https://doi.org/10.3390/agriculture9080173
Chicago/Turabian StyleGouvinhas, Irene, Paula Martins-Lopes, Teresa Carvalho, Ana Barros, and Sónia Gomes. 2019. "Impact of Colletotrichum acutatum Pathogen on Olive Phenylpropanoid Metabolism" Agriculture 9, no. 8: 173. https://doi.org/10.3390/agriculture9080173
APA StyleGouvinhas, I., Martins-Lopes, P., Carvalho, T., Barros, A., & Gomes, S. (2019). Impact of Colletotrichum acutatum Pathogen on Olive Phenylpropanoid Metabolism. Agriculture, 9(8), 173. https://doi.org/10.3390/agriculture9080173