Assessment of Ventral Tail Base Surface Temperature for the Early Detection of Japanese Black Calves with Fever
<p>(<b>a</b>) Wearable wireless ST sensor; and (<b>b</b>) materials that attached the sensor to the tail surface.</p> "> Figure 2
<p>Sensor attachment area. Yellow square in the picture on the left indicates the sensor attachment area and the picture on the right shows the sensor unit wrapped with elastic medical bandages.</p> "> Figure 3
<p>Temporal change in the mean ventral tail base surface temperature. Black arrows indicate the time of feeding, whereas yellow arrows indicate the time in which rectal temperature (RT) was taken.</p> "> Figure 4
<p>Associations of actual rectal temperatures with the four measurements: (<b>a</b>) raw surface temperature (ST) values; (<b>b</b>) estimated ST; (<b>c</b>) residual ST (rST); and (<b>d</b>) estimated rST.</p> "> Figure 5
<p>Variable importance obtained using a random forest. Variables are ordered by their importance as estimated by the random forest model. P indicates positive and N indicates negative. The terms h3min, h6min, h12min, h24min, and h48min denote the minimum value of surface temperature (ST) during the last 3, 6, 12, 24, and 48 h, respectively. The terms h3max, h6max, h12max, h24max, and h48max denote the maximum value of ST during the last 3, 6, 12, 24, and 48 h, respectively. The terms h3mindiff, h6mindiff, h12mindiff, h24mindiff, and h48mindiff denote the difference between the current minimum ST and past minimum ST during the last 3, 6, 12, 24, and 48 h, respectively. The terms h3maxdiff, h6maxdiff, h12maxdiff, h24maxdiff, and h48maxdiff denote the difference between the current maximum ST and past maximum ST during the last 3, 6, 12, 24, and 48 h, respectively.</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hirooka, H. Marbled Japanese black cattle. J. Anim. Breed. Genet. 2014, 131, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gotoh, T.; Nishimura, T.; Kuchida, K.; Mannen, H. The Japanese Wagyu beef industry: Current situation and future prospects-A review. Australas. J. Anim. Sci. 2018, 31, 933–950. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Agriculture, Forestry and Fisheries of Japan. Statistics of Agriculture, Forestry and Fisheries. 2022. Available online: https://www.e-stat.go.jp/stat-search/file-download?statInfId=000032185614&fileKind=0 (accessed on 21 October 2022).
- Dubrovsky, S.A.; Van Eenennaam, A.L.; Karle, B.M.; Rossitto, P.V.; Lehenbauer, T.W.; Aly, S.S. Epidemiology of bovine respiratory disease (BRD) in preweaned calves on California dairies: The BRD 10K study. J. Dairy Sci. 2019, 102, 7306–7319. [Google Scholar] [CrossRef] [PubMed]
- Dubrovsky, S.A.; Van Eenennaam, A.L.; Karle, B.M.; Rossitto, P.V.; Lehenbauer, T.W.; Aly, S.S. Bovine respiratory disease (BRD) cause-specific and overall mortality in preweaned calves on California dairies: The BRD 10K study. J. Dairy Sci. 2019, 102, 7320–7328. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, Y.; Hashimoto, K.; Iki, Y.; Anan, T.; Hayashi, J.; Uematsu, M. Associations between calf factors of Japanese Black calves arriving at a backgrounding operation and bovine respiratory disease. Prev. Vet. Med. 2020, 182, 105100. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, Y.; Iki, Y.; Anan, T.; Hayashi, J.; Uematsu, M. Economic loss due to treatment of bovine respiratory disease in Japanese Black calves arriving at a backgrounding operation in Miyazaki. J. Vet. Med. Sci. 2022, 84, 1328–1334. [Google Scholar] [CrossRef]
- Koyama, K.; Koyama, T.; Sugimoto, M.; Kusakari, N.; Miura, R.; Yoshioka, K.; Hirako, M. Prediction of calving time in Holstein dairy cows by monitoring the ventral tail base surface temperature. Vet. J. 2018, 240, 1–5. [Google Scholar] [CrossRef]
- Higaki, S.; Koyama, K.; Sasaki, Y.; Abe, K.; Honkawa, K.; Horii, Y.; Minamino, T.; Mikurino, Y.; Okada, H.; Miwakeichi, F. Technical note: Calving prediction in dairy cattle based on continuous measurements of ventral tail base skin temperature using supervised machine learning. J. Dairy Sci. 2020, 103, 8535–8540. [Google Scholar] [CrossRef]
- Miwa, M.; Matsuyama, S.; Nakamura, S.; Noda, K.; Sakatani, M. Prepartum change in ventral tail base surface temperature in beef cattle: Comparison with vaginal temperature and behavior indices, and effect of ambient temperature. J. Reprod. Dev. 2019, 65, 515–525. [Google Scholar] [CrossRef] [Green Version]
- Miura, R.; Yoshioka, K.; Miyamoto, T.; Nogami, H.; Okada, H.; Itoh, T. Estrous detection by monitoring ventral tail base surface temperature using a wearable wireless sensor in cattle. Anim. Reprod. Sci. 2017, 180, 50–57. [Google Scholar] [CrossRef]
- Nogami, H.; Okada, H.; Miyamoto, T.; Maeda, R.; Itoh, T. Wearable and compact wireless sensor nodes for measuring the temperatureof the base of a calf’s tail. Sens. Mater. 2013, 25, 577–582. [Google Scholar]
- Nogami, H.; Okada, H.; Miyamoto, T.; Maeda, R.; Itoh, T. Wearable wireless temperature sensor nodes appressed to base of a calf’s tail. Sens. Mater. 2014, 26, 539–545. [Google Scholar]
- Anzai, M.; Akama, S.; Yoneyama, S.; Ozawa, T.; Sawada, H.; Takahashi, Y.; Miyamoto, T.; Muneta, Y. Using body surface temperature sensors to detect a fever and its relationship with the infection dynamics of pathogens related to brdc during the introduction of calves at a deposit ranch. J. Jpn. Vet. Med. Assoc. 2022, 75, e1–e8. [Google Scholar] [CrossRef]
- Rutten, C.J.; Velthuis, A.G.J.; Steeneveld, W.; Hogeveen, H. Invited review: Sensors to support health management on dairy farms. J. Dairy Sci. 2013, 96, 1928–1952. [Google Scholar] [CrossRef] [Green Version]
- Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef]
- Machado, G.; Mendoza, M.R.; Corbellini, L.G. What variables are important in predicting bovine viral diarrhea virus? A random forest approach. Vet. Res. 2015, 46, 85. [Google Scholar] [CrossRef] [Green Version]
- Piñeiro, C.; Morales, J.; Rodríguez, M.; Aparicio, M.; Manzanilla, E.G.; Koketsu, Y. Big (pig) data and the internet of the swine things: A new paradigm in the industry. Anim. Front. 2019, 9, 6–15. [Google Scholar] [CrossRef]
- Schneider, M.; Tait, R., Jr.; Busby, W.; Reecy, J. An evaluation of bovine respiratory disease complex in feedlot cattle: Impact on performance and carcass traits using treatment records and lung lesion scores. J. Anim. Sci. 2009, 87, 1821–1827. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.D.; Fulton, R.W.; Lehenbauer, T.W.; Step, D.L.; Confer, A.W. The epidemiology of bovine respiratory disease: What is the evidence for predisposing factors? Can. Vet. J. 2010, 51, 1095–1102. [Google Scholar]
- Richeson, J.T.; Pinedo, P.J.; Kegley, E.B.; Powell, J.G.; Gadberry, M.S.; Beck, P.A.; Falkenberg, S.M. Association of hematologic variables and castration status at the time of arrival at a research facility with the risk of bovine respiratory disease in beef calves. J. Am. Vet. Med. Assoc. 2013, 243, 1035–1041. [Google Scholar] [CrossRef]
- Hay, K.E.; Morton, J.M.; Mahony, T.J.; Clements, A.C.; Barnes, T.S. Associations between animal characteristic and environmental risk factors and bovine respiratory disease in Australian feedlot cattle. Prev. Vet. Med. 2016, 25, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Hay, K.E.; Morton, J.M.; Schibrowski, M.L.; Clements, A.C.A.; Mahony, T.J.; Barnes, T.S. Associations between prior management of cattle and risk of bovine respiratory disease in feedlot cattle. Prev. Vet. Med. 2016, 25, 37–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, G.M.; Cassidy, J.P.; Clegg, T.A.; Tratalos, J.A.; McClure, J.; O’Neill, R.G.; Sammin, D.J.; Casey, M.J.; McElroy, M.; Earley, B.; et al. A retrospective epidemiological analysis of risk factors for a primary necropsy diagnosis of bovine respiratory disease. Prev. Vet. Med. 2016, 132, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Karle, B.M.; Maier, G.U.; Love, W.J.; Dubrovsky, S.A.; Williams, D.R.; Anderson, R.J.; Van Eenennaam, A.L.; Lehenbauer, T.W.; Aly, S.S. Regional management practices and prevalence of bovine respiratory disease in California’s preweaned dairy calves. J. Dairy Sci. 2019, 102, 7583–7596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maier, G.U.; Love, W.J.; Karle, B.M.; Dubrovsky, S.A.; Williams, D.R.; Champagne, J.D.; Anderson, R.J.; Rowe, J.D.; Lehenbauer, T.W.; Van Eenennaam, A.L.; et al. Management factors associated with bovine respiratory disease in preweaned calves on California dairies: The BRD 100 study. J. Dairy Sci. 2019, 102, 7288–7305. [Google Scholar] [CrossRef]
- Dubrovsky, S.A.; Van Eenennaam, A.L.; Aly, S.S.; Karle, B.M.; Rossitto, P.V.; Overton, M.W.; Lehenbauer, T.W.; Fadel, J.G. Preweaning cost of bovine respiratory disease (BRD) and cost-benefit of implementation of preventative measures in calves on California dairies: The BRD 10K study. J. Dairy Sci. 2020, 103, 1583–1597. [Google Scholar] [CrossRef]
- Deepak; Aly, S.S.; Love, W.J.; Blanchard, P.C.; Crossley, B.; Van Eenennaam, A.L.; Lehenbauer, T.W. Etiology and risk factors for bovine respiratory disease in pre-weaned calves on California dairies and calf ranches. Prev. Vet. Med. 2021, 197, 105506. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Negri Bernardino, P.; Fausak, E.; Van Noord, M.; Maier, G. Scoping Review on Risk Factors and Methods for the Prevention of Bovine Respiratory Disease Applicable to Cow–Calf Operations. Animals 2022, 12, 334. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasaki, Y.; Iki, Y.; Anan, T.; Hayashi, J.; Uematsu, M. Assessment of Ventral Tail Base Surface Temperature for the Early Detection of Japanese Black Calves with Fever. Animals 2023, 13, 469. https://doi.org/10.3390/ani13030469
Sasaki Y, Iki Y, Anan T, Hayashi J, Uematsu M. Assessment of Ventral Tail Base Surface Temperature for the Early Detection of Japanese Black Calves with Fever. Animals. 2023; 13(3):469. https://doi.org/10.3390/ani13030469
Chicago/Turabian StyleSasaki, Yosuke, Yoshihiro Iki, Tomoaki Anan, Jun Hayashi, and Mizuho Uematsu. 2023. "Assessment of Ventral Tail Base Surface Temperature for the Early Detection of Japanese Black Calves with Fever" Animals 13, no. 3: 469. https://doi.org/10.3390/ani13030469
APA StyleSasaki, Y., Iki, Y., Anan, T., Hayashi, J., & Uematsu, M. (2023). Assessment of Ventral Tail Base Surface Temperature for the Early Detection of Japanese Black Calves with Fever. Animals, 13(3), 469. https://doi.org/10.3390/ani13030469