Applications of Random Nonlinear Photonic Crystals Based on Strontium Tetraborate
<p>Domain structure in strontium tetraborate visualized by etching. Crystallographic axes are shown by arrows. Thickness of structure in <span class="html-italic">a</span> direction is 1 mm.</p> "> Figure 2
<p>(<b>a</b>) Angular dependence of the second harmonic for nonlinear photonic crystals (NPC) and strontium tetraborate (SBO); (<b>b</b>) Maker fringes for single domain sample of SBO. Input radiation (532 nm) direction <span class="html-italic">k</span>, polarization of input radiation and second harmonic (266 nm) <span class="html-italic">E</span>.</p> "> Figure 3
<p>Random Maker fringes for NPC SBO calculated by varying the wavelength.</p> "> Figure 4
<p>Spectral dependence of the second harmonic for a sample of NPC SBO (blue) and single domain sample (black) calculated by varying the fundamental wavelength. Real domain structure of NPC SBO mapped via optical microscopy was used in the calculation.</p> "> Figure 5
<p>The spectra of deep ultraviolet (DUV) generated in several samples (S2, S4, S7, S8) obtained in separate growth experiments.</p> "> Figure 6
<p>DUV tuning curves for several samples (S2, S4, S7, S8) obtained in separate growth experiments. DUV power is normalized to the square of the power of the fundamental beam.</p> "> Figure 7
<p>An example of angular dependence of DUV generated in NPC SBO.</p> "> Figure 8
<p>RQPM autocorrelation trace of Tsunami oscillator measured with NPC SBO (blue) and BBO (black). Central wavelength 780 nm. SBO: pulse duration 83.3 fs; power 3.49 microwatts; SNR-2992; BBO: pulse duration 83.7 fs; power 929.9 microwatts; SNR-15079.</p> "> Figure 9
<p>Spectra of autocorrelation signal (<b>a</b>) and single-beam second harmonic (<b>b</b>).</p> "> Figure 10
<p>Pulse duration of Tsunami oscillator measured with NPC SBO throughout the tuning range at fixed angular position of the crystal.</p> "> Figure 11
<p>Variation of autocorrelation beam spectra on the NPC position. (<b>a</b>) Net data; (<b>b</b>) Data normalized to the maximal value in every section of constant coordinate.</p> "> Figure 12
<p>Optical scheme of autocorrelation measurement in nonlinear diffraction from virtual beam (NLDVB) geometry. 1-Tsunami oscillator; 2-beamsplitter; 3-mirror; 4-delay line; 5-focusing lens; 6-NPC SBO; 7-BG39 filter; 8-918D-UV-OD3 sensor.</p> "> Figure 13
<p>NLDVB autocorrelation trace of Tsunami oscillator measured with NPC SBO (blue) and BBO (black). Central wavelength 840 nm. SBO: pulse duration 75.7 fs; power 5.99 microwatts; SNR-1877; BBO: pulse duration 77.0 fs; power 770 microwatts; SNR-17510.</p> ">
Abstract
:1. Introduction
2. Orthorhombic Strontium Tetraborate (α-SBO)
3. Applications of NPC SBO
3.1. Generation of Deep UV Radiation in NPC SBO
3.2. Fs Pulses Diagnostics Using NPC SBO
3.2.1. RQPM Scheme
3.2.2. Autocorrelation Measurements Using Nonlinear Diffraction from Virtual Beam
4. Conclusions
Acknowledgments
Conflict of Interest
References and Notes
- Joannopoulos, J.D.; Meade, R.D.; Winn, J.N. Photonic Crystals; Princeton University Press: Princeton, NJ, USA, 2008; p. 286. [Google Scholar]
- Berger, V. Nonlinear photonic crystals. Phys. Rev. Lett. 1998, 81, 4136–4139. [Google Scholar] [CrossRef]
- Armstrong, A.; Bloembergen, N.; Ducuing, J.; Pershan, P.S. Interactions between light waves in a nonlinear dielectric. Phys. Rev. 1962, 127, 1918–1939. [Google Scholar] [CrossRef]
- Fejer, M.M.; Magel, G.A.; Jundt, D.H.; Byer, R.L. Quasi-Phase-Matched second harmonic generation: Tuning and tolerances. IEEE J. Quant. Electron. 1992, 28, 2631–2654. [Google Scholar] [CrossRef]
- Arie, A.; Voloch, N.C. Periodic, quasi-periodic and random quadratic nonlinear photonic crystals. Laser Photon. Rev. 2010, 4, 355–373. [Google Scholar] [CrossRef]
- Baudrier-Raybaut, M.; Haidar, R.; Kupecek, P.; Lemasson, P.; Rosencher, E. Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials. Nature 2004, 432, 374–376. [Google Scholar] [CrossRef]
- Morozov, E.Y.; Chirkin, A.S. Stochastic quasi-phase matching in nonlinear-optical crystals with an irregular domain structure. Quantum Electron. 2004, 34, 227–232. [Google Scholar] [CrossRef]
- Fischer, R.; Saltiel, S.M.; Neshev, D.N.; Krolikovski, W.; Kivshar, Y.S. Broadband femtosecond frequency doubling in random media. Appl. Phys. Lett. 2006, 89, 1–3. [Google Scholar]
- Aleksandrovsky, A.S.; Vyunishev, A.M.; Zaitsev, A.I.; Zamkov, A.V.; Arkhipkin, V.G. Detection of randomized nonlinear photonic crystal structure in a non-ferroelectric crystal. J. Opt. A, Pure Appl. Opt. 2007, 9, S334–S338. [Google Scholar] [CrossRef]
- Aleksandrovsky, A.S.; Vyunishev, A.M.; Shakhura, I.E.; Zaitsev, A.I.; Zamkov, A.V. Random quasi-phase-matching in nonlinear photonic crystal structure of strontium tetraborate. Phys. Rev. A 2008, 78, 31802–31806. [Google Scholar] [CrossRef]
- Shutov, I.V.; Chirkin, A.S. Consecutive high-order harmonic generation and formation of subfemtosecond light pulses in aperiodical nonlinear photonic crystals. Phys. Rev. A 2008, 78. [Google Scholar]
- Sheng, Y.; Ma, D.L.; Ren, M.L.; Chai, W.Q.; Li, Z.Y.; Koynov, K.; Krolikowski, W. Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal. Appl. Phys. Lett. 2011, 99. [Google Scholar]
- Simagina, L.V.; Mishina, E.D.; Semin, S.V.; Ilyin, N.A.; Volk, T.R.; Gainutdinov, R.V.; Ivleva, L.I. Second harmonic generation in microdomain gratings fabricated in strontium-barium niobate crystals with an atomic force microscope. J. Appl. Phys. 2011, 110. [Google Scholar]
- Petrov, V.; Rotermund, F.; Noack, F.; Ringling, J.; Kittelmann, O.; Komatsu, R. Frequency conversion of Ti:Sapphire-Based femtosecond laser systems to the 200-nm spectral region using nonlinear optical crystals. IEEE J. Sel. Top. Quantum Electron. 1999, 5, 1532–1542. [Google Scholar] [CrossRef]
- Kurimura, S.K; Harada, M.; Muramatsu, K.; Ueda, M.; Adachi, M.; Yamada, T.; Ueno, T. Quartz revisits nonlinear optics: Twinned crystal for quasi-phase matching. Opt. Mater. Express 2011, 1, 1367–1375. [Google Scholar] [CrossRef]
- Petrov, V.; Noack, F.; Shen, D.Z.; Feng, P.; Shen, G.Q.; Wang, X.Q.; Komatsu, R.; Alex, V. Application of the nonlinear crystal SrB4O7 for ultrafast diagnostics converting to wavelengths as short as 125 nm. Opt. Lett. 2004, 29, 373–375. [Google Scholar] [CrossRef]
- Zinenko, V.I.; Pavlovskii, M.S.; Zaitsev, A.I.; Krylov, A.S.; Shinkorenko, A.S. Vibrational spectra and elastic piezoelectric and polarization properties of the α-SrB4O7 crystal. J. Exp. Theor. Phys. 2012, 115, 455–461. [Google Scholar]
- Zaitsev, A.I.; Aleksandrovsky, A.S.; Vasiliev, A.D.; Zamkov, A.V. Domain structure in strontium tetraborate single crystal. J. Cryst. Growth 2008, 310, 1–4. [Google Scholar] [CrossRef]
- Aleksandrovsky, A.S.; Vyunishev, A.M.; Zaitsev, A.I.; Slabko, V.V. Random-Quasi-Phase matched conversion of broadband radiation in a nonlinear photonic crystal. Phys. Rev. A 2010, 82. [Google Scholar]
- Aleksandrovsky, A.S.; Vyunishev, A.M.; Zaitsev, A.I.; Ikonnikov, A.A.; Pospelov, G.I.; Rovskii, V.E.; Slabko, V.V. Deep-UV generation in an SBO crystal with an irregular domain structure. Quantum Electron. 2011, 41, 748–753. [Google Scholar] [CrossRef]
- Aleksandrovsky, A.S.; Vyunishev, A.M.; Shakhura, I.E.; Zaitsev, A.I.; Zamkov, A.V. Nonlinear optical processes in domain structures of strontium tetraborate. Opt. Spectrosc. 2009, 107, 359–362. [Google Scholar] [CrossRef]
- Aleksandrovsky, A.S.; Vyunishev, A.M.; Zaitsev, A.I.; Ikonnikov, A.A.; Pospelov, G.I. Ultrashort pulses characterization by nonlinear diffraction from virtual beam. Appl. Phys. Lett. 2011, 98. [Google Scholar]
- Aleksandrovsky, A.S.; Vyunishev, A.M.; Zaitsev, A.I.; Pospelov, G.I.; Slabko, V.V. Diagnostics of fs pulses by noncollinear random quasi-phase-matched frequency. Appl. Phys. Lett. 2011, 99. [Google Scholar]
- Saltiel, S.M.; Neshev, D.N.; Krolikowski, W.; Voloch-Bloch, N.; Arie, A.; Bang, O.; Kivshar, Y.S. Nonlinear diffraction from a virtual beam. Phys. Rev. Lett. 2010, 104. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Aleksandrovsky, A.S.; Vyunishev, A.M.; Zaitsev, A.I. Applications of Random Nonlinear Photonic Crystals Based on Strontium Tetraborate. Crystals 2012, 2, 1393-1409. https://doi.org/10.3390/cryst2041393
Aleksandrovsky AS, Vyunishev AM, Zaitsev AI. Applications of Random Nonlinear Photonic Crystals Based on Strontium Tetraborate. Crystals. 2012; 2(4):1393-1409. https://doi.org/10.3390/cryst2041393
Chicago/Turabian StyleAleksandrovsky, Aleksandr S., Andrey M. Vyunishev, and Alexandre I. Zaitsev. 2012. "Applications of Random Nonlinear Photonic Crystals Based on Strontium Tetraborate" Crystals 2, no. 4: 1393-1409. https://doi.org/10.3390/cryst2041393
APA StyleAleksandrovsky, A. S., Vyunishev, A. M., & Zaitsev, A. I. (2012). Applications of Random Nonlinear Photonic Crystals Based on Strontium Tetraborate. Crystals, 2(4), 1393-1409. https://doi.org/10.3390/cryst2041393