Electrochemical and Optical Properties of Magnesium-Alloy Hydrides Reviewed
<p>Schematic model for hydrogenation via (<b>a</b>) gas phase (<b>b</b>) electrolyte.</p> "> Figure 2
<p>Pressure composition isotherms for hydrogen absorption [<a href="#B10-crystals-02-01410" class="html-bibr">10</a>].</p> "> Figure 3
<p>The concept of a sealed rechargeable Ni-metal hydride (MH) battery seen from a schematic point of view [<a href="#B12-crystals-02-01410" class="html-bibr">12</a>].</p> "> Figure 4
<p>Pressure–Composition isotherm of yttrium film during gas phase hydrogenation (black square) and transmission spectrum depending on the hydrogen concentration (red circle) [<a href="#B16-crystals-02-01410" class="html-bibr">16</a>].</p> "> Figure 5
<p>Electrode potential (solid black line) and optical transmission (dashed red line) intensity of yttrium film during electrochemical hydrogenation (a) and dehydrogenation (b) [<a href="#B17-crystals-02-01410" class="html-bibr">17</a>].</p> "> Figure 6
<p>Influence of Gd-Mg composition upon the transmission of GdMgH<sub>3 </sub>thin films [<a href="#B18-crystals-02-01410" class="html-bibr">18</a>].</p> "> Figure 7
<p>Three optical states of Mg-Gd switchable mirror: reflecting (<b>a</b>), absorbing (<b>b</b>) and transmitting (<b>c</b>) states [<a href="#B19-crystals-02-01410" class="html-bibr">19</a>].</p> "> Figure 8
<p>Electrochemical (de)hydrogenation cycle (line) with switching optical response (dashed) between reflective and transparent states of Mg-Ni alloy and its hydride respectively [<a href="#B21-crystals-02-01410" class="html-bibr">21</a>].</p> "> Figure 9
<p>Fundamental band gaps of complex magnesium hydrides [<a href="#B22-crystals-02-01410" class="html-bibr">22</a>].</p> "> Figure 10
<p>Rutile MgH<sub>2</sub> (a) and fluorite Mg<sub>x</sub>TM<sub>(1-x)</sub>H<sub>2</sub> (b).</p> "> Figure 11
<p>Comparison between (<b>a</b>) AB<sub>5</sub> type compound and (<b>b</b>) Mg<sub>0.72</sub>Sc<sub>0.28</sub>(Pd<sub>0.012</sub>Rh<sub>0.012</sub>).</p> "> Figure 12
<p>Galvanostatic discharge curves of: thin films (<b>a</b>) and bulk materials (<b>b</b>); the current density was 1000 mA/g for the thin films and 50 mA/g for the bulk materials [<a href="#B28-crystals-02-01410" class="html-bibr">28</a>].</p> "> Figure 13
<p>Neutron diffraction of Mg<sub>0.65</sub>Sc<sub>0.35</sub> (<b>a</b>) before deuterium loading (<b>b</b>) after deuterium loading [<a href="#B30-crystals-02-01410" class="html-bibr">30</a>].</p> "> Figure 14
<p>Relaxation map showing rate ω<sub>H</sub> of H hopping as a function of reciprocal temperature in MgH<sub>2</sub>, ScH<sub>2</sub>, Mg<sub>(1-y)</sub>Sc<sub>y</sub>H<sub>x</sub>, and LaNi<sub>5</sub>H<sub>6.8</sub> [<a href="#B31-crystals-02-01410" class="html-bibr">31</a>].</p> "> Figure 15
<p>Enthalpies of formation of Mg<sub>1-y</sub>Sc<sub>y</sub>H<sub>2</sub>. (<b>a</b>) Rutile (<b>b</b>) fluorite [<a href="#B32-crystals-02-01410" class="html-bibr">32</a>].</p> "> Figure 16
<p>Electrochemical determined reversible electrochemical capacity at room temperature as a function of magnesium content in Mg-Ti thin film electrodes.</p> "> Figure 17
<p><span class="html-italic">In-situ</span> electrochemical XRD measurements of Mg<sub>0.90</sub>Ti<sub>0.10</sub> (<b>a</b>) and Mg<sub>0.70</sub>Ti<sub>0.30</sub> (<b>b</b>) during hydrogenation [<a href="#B34-crystals-02-01410" class="html-bibr">34</a>].</p> "> Figure 18
<p>Electrochemically determined dehydrogenation isotherms of 200 nm; (i-a) Mg<sub>0.69</sub>Ti<sub>0.21</sub>Al<sub>0.10</sub> and (i-b) Mg<sub>0.80</sub>Ti<sub>0.20</sub> thin films with a 10 nm Pd top-coat (ii-a) Mg<sub>0.55</sub>Ti<sub>0.35</sub>Si<sub>0.10</sub> and (ii-b) Mg<sub>0.69</sub>Ti<sub>0.21</sub>Si<sub>0.10</sub> films capped with 10 nm Pd [<a href="#B44-crystals-02-01410" class="html-bibr">44</a>].</p> "> Figure 19
<p>Pressure-optical transmission isotherms of (<b>a</b>) continuously gradient Mg<sub>y</sub>Ti<sub>(1-y)</sub>; (<b>b</b>) discrete compositions of Mg<sub>y</sub>Ti<sub>(1-y)</sub>; and (<b>c</b>) phase image of ternary gradient Mg-Ni-Ti alloy hydrides. [<a href="#B45-crystals-02-01410" class="html-bibr">45</a>]</p> ">
Abstract
:1. Introduction
Medium | Hydrogen Content | Volume Density* (H atoms l−1) | Energy Density** | |
---|---|---|---|---|
(wt. %) | (10−19) | MJ kg−1 | mJ I−1 | |
H2 (g) (150 atm) | 100.00 | 0.5 | 141.90 | 1.02 |
H2 (l) (−253°C) | 100.00 | 4.2 | 141.90 | 9.92 |
MgH2 | 7.65 | 6.7 | 9.92 | 14.32 |
VH2 | 2.10 | 11.4 | - | - |
Mg2NiH4 | 3.60 | 5.9 | 4.48 | 11.49 |
TiFeH1.95 | 1.95 | 5.5 | 2.47 | 13.56 |
LaNi5H6.7 | 1.50 | 7.6 | 1.94 | 12.77 |
ZrMn2H3.6 | 1.75 | 6.0 | - | - |
ZrMn2Fe0.8H3.4 | 1.38 | 4.8 | - | - |
2. Gas Phase versus Electrochemical Hydrogen Storage
3. Applications of Metal-Hydrides
3.1. NiMH Battery
3.2. Electrochromic Applications
4. Magnesium-Based Binary Alloys
4.1. Magnesium Scandium Alloys
4.2. Magnesium Titanium Alloys
4.3. Mg-Based Ternary Alloys
5. Hydrogenography
6. Conclusions
References
- Guo, Z.X.; Shang, C.; Aguey-Zinsou, K.F. Materials challenges for hydrogen storage. J. Eur. Ceram. Soc. 2008, 28, 1467–1473. [Google Scholar] [CrossRef]
- Momirlan, M.; Veziroglu, T.N. The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. Int. J. Hydrogen Energy 2005, 30, 795–802. [Google Scholar] [CrossRef]
- Züttel, A.; Borgschulte, A.; Schlapbach, L. Hydrogen as A Future Energy Carrier; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008; p. 5. [Google Scholar]
- Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358. [Google Scholar] [CrossRef]
- Ross, D.K. Hydrogen storage: The major technological barrier to the development of hydrogen fuel cell cars. Vacuum 2006, 80, 1084–1089. [Google Scholar] [CrossRef]
- Fukai, Y. The Metal-Hydrogen System, Basic Bulk Properties. In Springer Series in Materials Science; Springer: Berlin, Germany, 1993; pp. 55–88. [Google Scholar]
- Van Vucht, J.H.N.; Kujipers, F.A.; Bruning, H.C.A.M. Reversible room-temperature absorption of large quantites of hydrogen by intermetallic compounds. Philips Res. Rep. 1970, 25, 133–140. [Google Scholar]
- Selvam, P.; Viswanathan, B.; Swamy, C.S.; Srinivasan, V. Magnesium and magnesium alloy hydrides. Int. J. Hydrogen Energy 1986, 11, 169–192. [Google Scholar] [CrossRef]
- Luz, Z.; Genossar, J.; Rudman, P.S. Identification of the diffusing atom in MgH2. J. Less Common Metals 1980, 73, 113–118. [Google Scholar] [CrossRef]
- Züttel, A. Materials for hydrogen storage. Mater. Today 2003, 6, 24–33. [Google Scholar] [CrossRef]
- Willems, J.J.G. Metal Hydride Electrodes Stability of LaNi5-Related Compounds; Philips Research Laboratories: Eindhoven, The Netherlands, 1984; Volume 39, pp. 1–94. [Google Scholar]
- Notten, P.H.L. Rechargeable Nickel-Metal hydride Batteries: A Successful New Concept. In Interstitial Intermetallic Alloys; Grandjean, F., Long, G.L., Buschow, K.H.J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995; Volume 281, p. 151. [Google Scholar]
- Platt, J.R. Electrochromism, a Possible Change of Color Producible in Dyes by an Electric Field. J. Chem. Phys. 1961, 34, 862–863. [Google Scholar] [CrossRef]
- Deb, S.K. A Novel electrophotographic system. Appl. Opt. 1969, 8, 192–195. [Google Scholar]
- Huiberts, J.N.; Griessen, R.; Rector, J.H.; Wijngaarden, R.J.; Dekker, J.P.; de Groot, D.G.; Koeman, N.J. Yttrium and lanthanum hydride films with switchable optical properties. Nature 1996, 380, 231–234. [Google Scholar] [CrossRef]
- Griessen, R.; Giebels, I.A.M.E.; Dam, B. Optical Properties of Metal-Hydrides: Switchable Mirrors. Available online: http://www.nat.vu.nl/en/Images/ReviewSwitchableMirrors10AUG04_tcm69-85550.pdf (accessed on 28 November 2011).
- Notten, P.H.L.; Kremers, M.; Griessen, R. Optical switching of Y-hydride thin film electrodes. J. Electrochem. Soc. 1996, 143, 3348–3353. [Google Scholar] [CrossRef]
- Van der Sluis, P.M.; Ouwerkerk, M.; Duine, P.A. Optical switching based on magnesium lanthanide alloy hydrides. Appl. Phys. Lett. 1997, 70, 3356–3358. [Google Scholar] [CrossRef]
- Griessen, R.; van der Sluis, P. Schaltbare Spiegel-Elektronenkorrelationen in der Anwendung. Physik Unserer Zeit 2001, 32, 76–83. [Google Scholar] [CrossRef]
- Niessen, R.A.H.; Notten, P.H.L. Electrochemical hydrogen storage characteristics of thin film MgX (X=Sc, Ti, V, Cr) compounds. Electrochem. Solid StateLett. 2005, 8, A534–A538. [Google Scholar] [CrossRef]
- Richardson, T.J.; Slack, J.L.; Armitage, R.D.; Kostecki, R.; Farangis, B.; Rubin, M.D. Switchable mirrors based on nickel-magnesium films. Appl. Phys. Lett. 2001, 78, 3047–3049. [Google Scholar] [CrossRef]
- Karazhanov, S.Zh.; Ulyashin, A.G.; Vajeeston, P.; Ravindran, P. Hydrides as materials for semiconductor electronics. Philos. Mag. 2008, 88, 2461–2476. [Google Scholar] [CrossRef]
- Reilly, J.J.; Wiswall, R.H. Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4. Inorg. Chem. 1968, 7, 2254–2256. [Google Scholar] [CrossRef]
- Janot, R.; Aymard, L.; Rougier, A.; Nazri, G.; Tarascon, J. Enhanced hydrogen sorption capacities and kinetics of Mg2Ni alloys by ball-milling with carbon and Pd coating. J. Mater. Res. 2003, 18, 1749–1752. [Google Scholar] [CrossRef]
- Zhang, S.G.; Hara, Y.; Suda, S.; Morikawa, T.; Inoue, H.; Iwakura, C. Physicochemical and electrochemical hydriding-dehydriding characteristics of amorphous MgNix (x = 1.0, 1.5, 2.0) alloys prepared by mechanical alloying. J. Solid State Electrochem. 2001, 5, 23–28. [Google Scholar] [CrossRef]
- Süleyman, Er.; Tiwari, D.; de Wijs, G.A.; Brocks, G. Tunable Hydrogen Storage in Magnesium-Transition Metal Compounds: First-Principles Calculations. Phys. Rev. B 2009, 79, 1–8. [Google Scholar]
- Niessen, R.A.H.; Notten, P.H.L. Hydrogen storage in thin film magnesium-scandium alloys. J Alloy Compd. 2005, 404-406, 457–460. [Google Scholar] [CrossRef]
- Kalisvaart, W.P.; Niessen, R.A.H.; Notten, P.H.L. Electrochemical hydrogen storage in MgSc alloys: A comparative study between thin films and bulk materials. J. Alloy Compd. 2006, 417, 280–291. [Google Scholar] [CrossRef]
- Latroche, M.; Kalisvaart, P.; Notten, P.H.L. Crystal structure of Mg0.65Sc0.35Dx deuterides studied by X-ray and neutron powder diffraction. J. Solid State Chem. 2006, 179, 3024–3032. [Google Scholar] [CrossRef]
- Kalisvaart, W.P.; Latroche, M.; Cuevas, F.; Notten, P.H.L. In situ neutron diffraction study on Pd-doped Mg0.65Sc0.35 electrode material. J. Solid State Chem. 2008, 181, 1141–1148. [Google Scholar] [CrossRef]
- Conradi, M.S.; Mendenhall, M.P.; Ivancic, T.M.; Carl, E.A.; Browning, C.D.; Notten, P.H.L.; Kalisvaart, W.P.; Magusin, P.C.M.M.; Bowman, R.C., Jr.; Hwang, S.; Adolphi, N.L. NMR to determine rates of motion and structures in metal-hydrides. J. Alloy Compd. 2007, 446-447, 499–503. [Google Scholar] [CrossRef]
- Pauw, B.R.; Kalisvaart, W.P.; Tao, S.X.; Koper, M.T.M.; Jansen, A.P.J.; Notten, P.H.L. Cubic MgH2 stabilized by alloying with transition metals: A density functional theory study. Acta Mater. 2008, 56, 2948–2954. [Google Scholar] [CrossRef]
- Vermeulen, P.; Niessen, R.A.H.; Notten, P.H.L. Hydrogen storage in metastable MgyTi(1−y) thin films. Electrochem. Commun. 2006, 8, 27–32. [Google Scholar] [CrossRef]
- Vermeulen, P.; Wondergem, H.J.; Graat, P.C.J.; Borsa, D.M.; Schreuders, H.; Dam, B.; Griessen, R.; Notten, P.H.L. In situ electrochemical XRD study of (de)hydrogenation of MgyTi(100−y) thin films. J. Mater. Chem. 2008, 18, 3680–3687. [Google Scholar] [CrossRef]
- Rousselot, S.; Bichat, M.P.; Guay, D.; Roué, L. Structure and electrochemical behaviour of metastable Mg50Ti50 alloy prepared by ball milling. J. Power Sources 2008, 175, 621–624. [Google Scholar] [CrossRef]
- Kalisvaart, W.P.; Notten, P.H.L. Mechanical alloying and electrochemical hydrogen storage of Mg-based systems. J. Mater. Res. 2008, 23, 2179–2187. [Google Scholar] [CrossRef]
- Kalisvaart, W.P.; Wondergem, H.J.; Bakker, F.; Notten, P.H.L. Mg-Ti based materials for electrochemical hydrogen storage. J. Mater. Res. 2007, 22, 1640–1649. [Google Scholar] [CrossRef]
- Kyoi, D.; Sato, T.; Rönnebro, E.; Kitamura, N.; Ueda, A.; Ito, M.; Katsuyama, S.; Hara, S.; Noréus, D.; Sakai, T. A new ternary magnesium-titanium hydride Mg7TiHx with hydrogen desorption properties better than both binary magnesium and titanium hydrides. J. Alloy Compd. 2004, 372, 213–217. [Google Scholar] [CrossRef]
- De Boer, F.R.; Boom, R.; Mattens, W.C.M.; Miedema, A.R.; Niessen, A.K. Cohesion in Metals; North-Holland: Amsterdam, The Netherlands, 1988; p. 127. [Google Scholar]
- Liang, G.; Schulz, R. Synthesis of Mg-Ti alloy by mechanical alloying. J. Mater. Sci. 2003, 38, 1179–1184. [Google Scholar] [CrossRef]
- Srinivasan, S.; Magusin, P.C.M.M.; Kalisvaart, W.P.; Notten, P.H.L.; Cuevas, F.; Latroche, M.; van Santen, R.A. Nanostructures of Mg0.65Ti0.35Dx studied with x-ray diffraction, neutron diffraction, and magic-angle-spinning 2H NMR spectroscopy. Phys. Rev. B 2010, 81, 1–10. [Google Scholar]
- Miedema, A.R.; de Châtel, P.F.; de Boer, F.R. Cohesion in Alloys-fundamentals of a Semi-empirical model. Physica B 1980, 100, 1–28. [Google Scholar]
- Miedema, A.R. The electronegativity parameter for transition metals: Heat of formation and charge transfer of alloys. J. Less Common Metals 1973, 32, 117–136. [Google Scholar] [CrossRef]
- Vermeulen, P.; van Thiel, E.F.M.J.; Notten, P.H.L. Ternary MgTiX-alloys: A promising route towards low-temperature, high-capacity, hydrogen-storage materials. Chem. Eur. J. 2007, 13, 9892–9898. [Google Scholar] [CrossRef]
- Gremaud, R.; Broedersz, C.P.; Borsa, D.M.; Borgschulte, A.; Mauron, P.; Schreuders, H.; Rector, J.H.; Dam, B.; Griessen, R. Hydrogenography: An optical combinatorial method to find new light-weight hydrogen-storage materials. Adv. Mater. 2007, 19, 2813–2817. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Manivasagam, T.G.; Kiraz, K.; Notten, P.H.L. Electrochemical and Optical Properties of Magnesium-Alloy Hydrides Reviewed. Crystals 2012, 2, 1410-1433. https://doi.org/10.3390/cryst2041410
Manivasagam TG, Kiraz K, Notten PHL. Electrochemical and Optical Properties of Magnesium-Alloy Hydrides Reviewed. Crystals. 2012; 2(4):1410-1433. https://doi.org/10.3390/cryst2041410
Chicago/Turabian StyleManivasagam, Thirugnasambandam G., Kamil Kiraz, and Peter H. L. Notten. 2012. "Electrochemical and Optical Properties of Magnesium-Alloy Hydrides Reviewed" Crystals 2, no. 4: 1410-1433. https://doi.org/10.3390/cryst2041410
APA StyleManivasagam, T. G., Kiraz, K., & Notten, P. H. L. (2012). Electrochemical and Optical Properties of Magnesium-Alloy Hydrides Reviewed. Crystals, 2(4), 1410-1433. https://doi.org/10.3390/cryst2041410