[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials

Abstract

Three-wave mixing in nonlinear materials—the interaction of two light waves to produce a third—is a convenient way of generating new optical frequencies from common laser sources. However, the resulting optical conversion yield is generally poor, because the relative phases of the three interacting waves change continuously as they propagate through the material1. This phenomenon, known as phase mismatch, is a consequence of optical dispersion (wave velocity is frequency dependent), and is responsible for the poor optical conversion potential of isotropic nonlinear materials2. Here we show that exploiting the random motion of the relative phases in highly transparent polycrystalline materials can be an effective strategy for achieving efficient phase matching in isotropic materials. Distinctive features of this ‘random quasi-phase-matching’ approach are a linear dependence of the conversion yield with sample thickness (predicted in ref. 3), the absence of the need for either preferential materials orientation or specific polarization selection rules, and the existence of a wavelength-dependent resonant size for the polycrystalline grains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three-wave mixing mechanisms in bulk, powder, periodically poled and polycrystalline materials.
Figure 2: Variation of the normalized DFG intensity I1 as a function of the polycrystalline sample thickness.
Figure 3: Normalized difference frequency generation efficiency as a function of the ZnSe mean grain size Λ.

Similar content being viewed by others

References

  1. Armstrong, J. A., Bloembergen, N., Ducuing, J. & Pershan, P. S. Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918–1939 (1962)

    Article  ADS  CAS  Google Scholar 

  2. Rosencher, E. & Vinter, B. Optoelectronics (Cambridge Univ. Press, Cambridge, 2002)

    Book  Google Scholar 

  3. Morozov, E. Y., Kaminskii, A. A., Chirkin, A. S. & Yusupov, D. B. Second optical harmonic generation in non linear crystals with a disordered domain structure. JETP Lett. 73, 647–650 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Fejer, M. M. Nonlinear optical frequency conversion. Phys. Today 40, 25–32 (1994)

    Article  Google Scholar 

  5. Ebrahimzadeh, M. & Dunn, M. H. Parametric generation of tunable light from continuous-wave to femtosecond pulses. Science 286, 1513–1517 (1999)

    Article  Google Scholar 

  6. Fiore, A., Berger, V., Rosencher, E., Bravetti, P. & Nagle, J. Phase matching using an isotropic nonlinear optical material. Nature 391, 463–466 (1998)

    Article  ADS  CAS  Google Scholar 

  7. Rosencher, E. et al. Quantum engineering of optical nonlinearities. Science 271, 168–173 (1996)

    Article  ADS  CAS  Google Scholar 

  8. Levi, O. et al. Difference frequency generation of 8-µm radiation in orientation-patterned GaAs. Opt. Lett. 27, 2091–2093 (2002)

    Article  ADS  CAS  Google Scholar 

  9. Eyres, L. A. et al. All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion. Appl. Phys. Lett. 79 (2001)

  10. Fejer, M. M., Magel, G. A., Jundt, D. H. & Byer, R. L. Quasi-phase-matched second harmonic generation: tuning and tolerances. IEEE J. Quant. Electron. 28, 2631–3654 (1992)

    Article  ADS  Google Scholar 

  11. Agranovitch, V. M. & Kravtsov, V. E. Nonlinear backscattering from opaque media. Phys. Rev. B 43, 13691–13694 (1991)

    Article  ADS  Google Scholar 

  12. Kravtsov, V. E., Agranovitch, V. M. & Grigorishin, K. I. Theory of second-harmonic generation in strongly scattering media. Phys. Rev. B 44, 4931–4942 (1991)

    Article  ADS  CAS  Google Scholar 

  13. Makeev, E. V. & Skipetrov, S. E. Second harmonic generation in suspensions of spherical particles. Opt. Commun. 224, 139–147 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Mel'nikov, V. A. et al. Second-harmonic generation in strongly scattering porous gallium phosphide. Appl. Phys. B 79, 225–228 (2004)

    Article  CAS  Google Scholar 

  15. Wiersma, D. S. & Cavalieri, S. A temperature-tunable random laser. Nature 414, 708–709 (2002)

    Article  ADS  Google Scholar 

  16. Kurtz, S. K. & Perry, T. T. A powder technique for the evaluation of non linear optical materials. J. Appl. Phys. 39, 3798–3813 (1968)

    Article  ADS  CAS  Google Scholar 

  17. Shoji, I., Kondo, T., Kitamoto, A., Shirane, M. & Ito, R. Absolute scale of second-order nonlinear-optical coefficients. J. Opt. Soc. Am. B 14, 2268–2294 (1997)

    Article  ADS  CAS  Google Scholar 

  18. Rzepka, E., Roger, J. P., Lemasson, P. & Triboulet, R. Optical transmission of ZnSe crystals grown by solid phase recrystallisation. J. Cryst. Growth 197, 480–484 (1999)

    Article  ADS  CAS  Google Scholar 

  19. Haidar, R. et al. Largely tunable mid-infrared (8–12 µm) difference frequency generation in isotropic semiconductors. J. Appl. Phys. 91, 2550–2552 (2002)

    Article  ADS  CAS  Google Scholar 

  20. Vodopyanov, K. L. et al. Optical parametric oscillation in quasi-phase-matched GaAs. Opt. Lett. 29, 1912–1914 (2004)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to C. Sanchez and A. Cheniere for X-ray measurements, A. Godard, M. Lefebvre and N. Guérineau for help, to M. Fejer for discussions, and D. Sessler for critical reading of the manuscript. This work was supported by the Délégation Générale pour l'Armement (DGA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Rosencher.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baudrier-Raybaut, M., Haïdar, R., Kupecek, P. et al. Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials. Nature 432, 374–376 (2004). https://doi.org/10.1038/nature03027

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03027

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing