Single-Particle Radiation Sensitivity of Ultrawide-Bandgap Semiconductors to Terrestrial Atmospheric Neutrons
"> Figure 1
<p>Density and bandgap of the ternary alloy Al<sub>x</sub>Ga<sub>1−x</sub>N as a function of the Al content <math display="inline"><semantics> <mrow> <mi>x</mi> </mrow> </semantics></math>.</p> "> Figure 2
<p>Spectrum of the atmospheric neutron (lethargic representation) at sea level recorded on the roof of the IBM Watson Research Center main building [<a href="#B48-crystals-15-00186" class="html-bibr">48</a>] in New York City. Experimental data courtesy of Paul Goldhagen (U.S. Department of Homeland Security). Percentages of the total flux of neutrons related to each domain of the spectrum are also indicated.</p> "> Figure 3
<p>Total number of interactions generated by Geant4 simulations of Al<sub>x</sub>Ga<sub>1−x</sub>N, diamond, and β-Ga<sub>2</sub>O<sub>3</sub> bulk targets under the full spectrum of atmospheric neutron shown in <a href="#crystals-15-00186-f002" class="html-fig">Figure 2</a> for an equivalent exposure time of 2.5 × 10<sup>7</sup> h.</p> "> Figure 4
<p>Number of neutron interactions in Al<sub>x</sub>Ga<sub>1−x</sub>N, diamond, and β-Ga<sub>2</sub>O<sub>3</sub> bulk targets subjected to part I, II, or III of the spectrum of atmospheric neutrons (<a href="#crystals-15-00186-f002" class="html-fig">Figure 2</a>) over 2.5 × 10<sup>7</sup> h.</p> "> Figure 5
<p>Neutron cross-section versus the neutron energy for diamond obtained from the TENDL open nuclear data library.</p> "> Figure 6
<p>Number of events of elastic and inelastic scattering and nuclear reactions in Al<sub>x</sub>Ga<sub>1−x</sub>N, diamond and β-Ga<sub>2</sub>O<sub>3</sub> bulk targets under the full spectrum of atmospheric neutrons shown in <a href="#crystals-15-00186-f002" class="html-fig">Figure 2</a> for an equivalent exposure time of 2.5 × 10<sup>7</sup> h.</p> "> Figure 7
<p>Number of secondary products in Al<sub>x</sub>Ga<sub>1−x</sub>N, diamond, and β-Ga<sub>2</sub>O<sub>3</sub> bulk targets subjected to part I, II, or III of the spectrum of atmospheric neutrons (<a href="#crystals-15-00186-f002" class="html-fig">Figure 2</a>) over 2.5 × 10<sup>7</sup> h.</p> "> Figure 8
<p>Number of events versus the shower multiplicity for Al<sub>x</sub>Ga<sub>1−x</sub>N, diamond, and β-Ga<sub>2</sub>O<sub>3</sub> bulk targets subjected to the full spectrum of atmospheric neutrons (<a href="#crystals-15-00186-f002" class="html-fig">Figure 2</a>) over 2.5 × 10<sup>7</sup> h.</p> "> Figure 9
<p>Number of secondary products versus the atomic number Z for GaN, Al<sub>0.6</sub>Ga<sub>0.4</sub>N, AlN, diamond, and β-Ga<sub>2</sub>O<sub>3</sub> bulk under the full spectrum of atmospheric neutron shown in <a href="#crystals-15-00186-f002" class="html-fig">Figure 2</a> over 2.5 × 10<sup>7</sup> h.</p> "> Figure 10
<p>Energy histograms (500 bins) of the secondary products generated in the Al<sub>x</sub>Ga<sub>1−x</sub>N alloy targets (1 cm<sup>2</sup> × 20 μm) irradiated with neutrons of energies less than 1 eV (part I of the spectrum) over 2.5 × 10<sup>7</sup> h. (<b>a</b>) GaN; (<b>b</b>) Al<sub>0.6</sub>Ga<sub>0.4</sub>N; (<b>c</b>) AlN.</p> "> Figure 11
<p>Energy histograms (500 bins) of the secondary products generated in the diamond and β-Ga<sub>2</sub>O<sub>3</sub> targets (1 cm<sup>2</sup> × 20 μm) irradiated with neutrons of energies less than 1 eV (part I of the spectrum) over 2.5 × 10<sup>7</sup> h. (<b>a</b>) Diamond; (<b>b</b>) β-Ga<sub>2</sub>O<sub>3</sub>.</p> "> Figure 12
<p>Energy histograms (500 bins) of the secondary products generated in the Al<sub>x</sub>Ga<sub>1−x</sub>N alloy targets (1 cm<sup>2</sup> × 20 μm) irradiated with neutrons of energies between 1 eV and 1 MeV (part II of the spectrum) over 2.5 × 10<sup>7</sup> h. (<b>a</b>) GaN; (<b>b</b>) Al<sub>0.6</sub>Ga<sub>0.4</sub>N; (<b>c</b>) AlN.</p> "> Figure 13
<p>Energy histograms (500 bins) of the secondary products generated in the diamond and β-Ga<sub>2</sub>O<sub>3</sub> targets (1 cm<sup>2</sup> × 20 μm) irradiated with neutrons of energies between 1 eV and 1 MeV (part II of the spectrum) over 2.5 × 10<sup>7</sup> h. (<b>a</b>) Diamond; (<b>b</b>) β-Ga<sub>2</sub>O<sub>3</sub>.</p> "> Figure 14
<p>Energy histograms (500 bins) of the secondary products generated in the Al<sub>x</sub>Ga<sub>1−x</sub>N alloy targets (1 cm<sup>2</sup> × 20 μm) irradiated with neutrons of energies higher than 1 MeV (part III of the spectrum) over 2.5 × 10<sup>7</sup> h. (<b>a</b>) GaN; (<b>b</b>) Al<sub>0.6</sub>Ga<sub>0.4</sub>N; (<b>c</b>) AlN.</p> "> Figure 15
<p>Energy histograms (500 bins) of the secondary products generated in the diamond and β-Ga<sub>2</sub>O<sub>3</sub> targets (1 cm<sup>2</sup> × 20 μm) irradiated with neutrons of energies higher than 1 MeV (part III of the spectrum) over 2.5 × 10<sup>7</sup> h. (<b>a</b>) Diamond; (<b>b</b>) β-Ga<sub>2</sub>O<sub>3</sub>.</p> "> Figure 16
<p>Number of interactions capable of depositing at least 0.7 fC of charge in the GaN, Al<sub>0.6</sub>Ga<sub>0.4</sub>N, diamond, and β-Ga<sub>2</sub>O<sub>3</sub> bulk targets subjected to part I, part II, and part III of the spectrum of atmospheric neutrons (<a href="#crystals-15-00186-f002" class="html-fig">Figure 2</a>) for an equivalent exposure time of 2.5 × 10<sup>7</sup> h.</p> "> Figure 17
<p>Total number of interactions capable of depositing at least 0.7 fC of charge in the GaN, Al<sub>0.6</sub>Ga<sub>0.4</sub>N, diamond, and β-Ga<sub>2</sub>O<sub>3</sub> bulk targets under the full spectrum of atmospheric neutron shown in <a href="#crystals-15-00186-f002" class="html-fig">Figure 2</a> for an equivalent exposure time of 2.5 × 10<sup>7</sup> h.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Properties
2.2. Atmospheric Neutron Source
2.3. Neutrons Interaction with Matter
2.4. Geant4 Simulation Details
3. Results
3.1. Number of Interactions
3.2. Type of Interactions
3.3. Number and Nature of Secondary Products
3.4. Energy Distributions of Secondary Products
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wong, M.H.; Bierwagen, O.; Kaplar, R.J.; Umezawa, H. Ultrawide-bandgap semiconductors: An overview. J. Mater. Res. 2021, 36, 4601–4615. [Google Scholar] [CrossRef]
- Tsao, J.Y.; Chowdhury, S.; Hollis, M.A.; Jena, D.; Johnson, N.M.; Jones, K.A.; Kaplar, R.J.; Rajan, S.; Van de Walle, C.G.; Bellotti, E.; et al. Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges. Adv. Electron. Mater. 2018, 4, 1600501. [Google Scholar] [CrossRef]
- Yang, J.; Liu, K.; Chen, X.; Shen, D. Recent advances in optoelectronic and microelectronic devices based on ultrawide-bandgap semiconductors. Prog. Quantum Electron. 2022, 83, 100397. [Google Scholar] [CrossRef]
- Slobodyan, O.; Flicker, J.; Dickerson, J.; Shoemaker, J.; Binder, A.; Smith, T.; Goodnick, S.; Kaplar, R.; Hollis, M. Analysis of the dependence of critical electric field on semiconductor bandgap. J. Mater. Res. 2021, 37, 849–865. [Google Scholar] [CrossRef]
- Chow, T.P.; Tyagi, R. Wide bandgap compound semiconductors for superior high-voltage unipolar power devices. IEEE Trans. Electron Devices 1994, 41, 1481–1483. [Google Scholar] [CrossRef]
- Umezawa, H. Recent advances in diamond power semiconductor devices. Mater. Sci. Semicond. Process. 2018, 78, 147. [Google Scholar] [CrossRef]
- Wong, M.H.; Higashiwaki, M. Vertical β-Ga2O3 power transistors: A review. IEEE Trans. Electron Devices 2020, 67, 3925–3937. [Google Scholar] [CrossRef]
- Qiao, R.; Zhang, H.; Zhao, S.; Yuan, L.; Jia, R.; Peng, B.; Zhang, Y. A state-of-art review on gallium oxide field-effect transistors. J. Phys. D Appl. Phys. 2022, 55, 383003. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Z.; Yang, L.; Yao, J.; Chen, J.; Zhang, J.; Wei, W.; Guo, Y.; Tang, W. β-Ga2O3-Based Power Devices: A Concise Review. Crystals 2022, 12, 406. [Google Scholar] [CrossRef]
- Xue, H.; He, Q.; Jian, G.; Long, S.; Pang, T.; Liu, M. An Overview of the Ultrawide Bandgap Ga2O3 Semiconductor-Based Schottky Barrier Diode for Power Electronics Application. Nanoscale Res. Lett. 2018, 13, 290. [Google Scholar] [CrossRef]
- He, J. Comparison between the ultra-wide band gap semiconductor AlGaN and GaN. IOP Conf. Ser. Mater. Sci. Eng. 2020, 738, 012009. [Google Scholar] [CrossRef]
- Baca, A.G.; Armstrong, A.M.; Allerman, A.A.; Douglas, E.A.; Sanchez, C.A.; King, M.P.; Coltrin, M.E.; Fortune, T.R.; Kaplar, R.J. An AlN/Al0.85Ga0.15N high electron mobility transistor. Appl. Phys. Lett. 2016, 109, 033509. [Google Scholar] [CrossRef]
- Isberg, J.; Hammersberg, J.; Johansson, E.; Wikström, T.; Twitchen, D.J.; Whitehead, A.J.; Coe, S.E.; Scarsbrook, G.A. High carrier mobility in single-crystal plasma-deposited diamond. Science 2002, 297, 1670. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Lee, C.H.; Hussian, K.; Razzak, T.; Abdullah, M.; Xia, Z.; Sohel, S.H.; Khan, A.; Rajan, S.; Lu, W. Al0.75Ga0.25N/Al0.60Ga0.40N heterojunction field effect transistor with fT of 40 GHz. Appl. Phys. Express 2019, 12, 066502. [Google Scholar] [CrossRef]
- Armstrong, A.M.; Klein, B.; Allerman, A.A.; Douglas, E.A.; Baca, A.G.; Crawford, M.H.; Pickrell, G.W.; Sanchez, C.A. Visible- blind and solar-blind detection induced by defects in AlGaN high electron mobility transistors. J. Appl. Phys. 2018, 123, 114502. [Google Scholar] [CrossRef]
- Jiang, H.X.; Lin, J.Y. AlGaN and InAlGaN alloys-epitaxial growth, optical and electrical properties, and applications. Opto-Electron. Rev. 2002, 10, 271–286. [Google Scholar]
- Xu, M.; Wang, D.; Fu, K.; Mudiyanselage, H.D.; Fu, H.; Zhao, Y. A review of ultrawide bandgap materials: Properties, synthesis and devices. Oxf. Open Mater. Sci. 2022, 2, itac004. [Google Scholar] [CrossRef]
- He, H.; Zhao, J.; Byggmästar, J.; He, R.; Nordlund, K.; He, C.; Djurabekova, F. Threshold displacement energy map of Frenkel pair generation in β-Ga2O3 from machine-learning-driven molecular dynamics simulations. Acta Mater. 2024, 276, 120087. [Google Scholar] [CrossRef]
- Pearton, S.; Aitkaliyeva, A.; Xian, M.; Ren, F.; Khachatrian, A.; Ildefonsorosa, A.; Islam, Z.; Rasel, M.; Haque, A.; Polyakov, A.; et al. Review—Radiation Damage in Wide and Ultra-Wide Bandgap Semiconductors. ECS J. Solid State Sci. Technol. 2021, 10, 055008. [Google Scholar] [CrossRef]
- Yu, C.; Guo, H.; Liu, Y.; Wu, X.; Zhang, L.; Tan, X.; Han, Y.; Ren, L. Simulation study on single-event burnout in field-plated Ga2O3 MOSFETs. Microelectron. Reliabil. 2023, 149, 115227. [Google Scholar] [CrossRef]
- Zhang, J.; Dong, P.; Dang, K.; Zhang, Y.; Yan, Q.; Xiang, H.; Su, J.; Liu, Z.; Si, M.; Gao, J.; et al. Ultra-wide bandgap semiconductor Ga2O3 power diodes. Nat. Commun. 2022, 13, 3900. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Ahsanullah, D.; Baumann, R.; Gnade, B. A Study of Neutron Induced Single-Event Damage in AlGaN/GaN HEMTs. In Proceedings of the 2022 IEEE Radiation Effects Data Workshop (REDW), Provo, UT, USA, 12–18 July 2022; pp. 1–6. [Google Scholar]
- Munteanu, D.; Autran, J.-L. Basic Mechanisms of Single-Event Occurrence in Silicon Carbide Semiconductor under Terrestrial Atmospheric Neutron Irradiation. Electronics 2023, 12, 4468. [Google Scholar] [CrossRef]
- Leray, J.L. Effects of atmospheric neutrons on devices, at sea level and in avionics embedded systems. Microelectron. Reliabil. 2007, 47, 1827–1835. [Google Scholar] [CrossRef]
- Chabak, K.D.; Leedy, K.D.; Green, A.J.; Mou, S.; Neal, A.T.; Asel, T.; Heller, E.R.; Hendricks, N.S.; Liddy, K.; Crespo, A.; et al. Lateral β-Ga2O3 field effect transistors. Semicond. Sci. Technol. 2020, 35, 013002. [Google Scholar] [CrossRef]
- Muhtadi, S.; Hwang, S.M.; Coleman, A.; Asif, F.; Simin, G.; Chandrashekhar, M.V.S.; Khan, A. High electron mobility transistors with Al0.65Ga0.35N channel layers on thick AlN/sapphire templates. IEEE Electron Device Lett. 2017, 38, 914–917. [Google Scholar] [CrossRef]
- Allerman, A.A.; Armstrong, A.M.; Fischer, A.J.; Dickerson, J.R.; Crawford, M.H.; King, M.P.; Moseley, M.W.; Wierer, J.J.; Kaplar, R.J. Al0.3Ga0.7N PN diode with breakdown Voltage >1600 V. Electron. Lett. 2016, 52, 1319–1321. [Google Scholar] [CrossRef]
- Xie, J.; Mia, S.; Dalmau, R.; Collazo, R.; Rice, A.; Tweedie, J.; Sitar, Z. Ni/Au Schottky diodes on AlxGa1–xN (0.7<x<1) grown on AlN single crystal substrates. Phys. Status Solidi C 2011, 8, 2407–2409. [Google Scholar]
- Iwasaki, T.; Yaita, J.; Kato, H.; Makino, T.; Ogura, M.; Takeuchi, D.; Okushi, H.; Yamasaki, S.; Hatano, M. 600 V diamond junction field-effect transistors operated at 200 °C. IEEE Electron Device Lett. 2014, 35, 241–243. [Google Scholar] [CrossRef]
- Masante, C.; Rouger, N.; Pernot, J. Recent progresses in deep-depletion diamond metal–oxide–semiconductor field-effect transistors. J. Phys. D Appl. Phys. 2021, 54, 233002. [Google Scholar] [CrossRef]
- Munteanu, D.; Autran, J.L. Susceptibility of Group-IV and III-V Semiconductor-based Electronics to Atmospheric Neutrons Explored by Geant4 Numerical Simulations. In Numerical Simulations; Rao, S., Ed.; IntechOpen: London, UK, 2018; pp. 117–134. [Google Scholar]
- Autran, J.-L.; Munteanu, D. Comparative Radiation Response of GaN and Ga2O3 Exposed to Ground-Level Neutrons. Crystals 2024, 14, 128. [Google Scholar] [CrossRef]
- Autran, J.L.; Munteanu, D. Radiation Response of Group-IV and III-V Semiconductors Subjected to D–D and D–T Fusion Neutrons. In New Advances in Semiconductors; Cavalheiro, A.A., Ed.; IntechOpen: London, UK, 2022; pp. 1–21. [Google Scholar]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. Geant4—A simulation toolkit. Nucl. Instrum. Meth. A 2003, 506, 250–303. [Google Scholar] [CrossRef]
- Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce Dubois, P.; Asai, M.; Barrand, G.; Capra, R.; Chauvie, S.; Chytraceket, R.; et al. Geant4 developments and applications. IEEE Trans. Nucl. Sci. 2006, 53, 270–278. [Google Scholar] [CrossRef]
- Allison, J.; Amako, K.; Apostolakis, J.; Arce, P.; Asai, M.; Aso, T.; Bagli, E.; Bagulya, A.; Banerjee, S.; Barrand, G.; et al. Recent developments in Geant4. Nucl. Instrum. Meth. A 2016, 835, 186–225. [Google Scholar] [CrossRef]
- Adachi, S. III-V Ternary and Quaternary Compounds. In Springer Handbook of Electronic and Photonic Materials; Kasap, S., Capper, P., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017; pp. 725–741. [Google Scholar]
- Coffie, R.L. High Power High Frequency Transistors: A Material’s Perspective. In High-Frequency GaN Electronic Devices; Fay, P., Jena, D., Maki, P., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 5–41. [Google Scholar]
- Yakimov, E.B.; Polyakov, A.Y.; Shchemerov, I.V.; Smirnov, N.B.; Vasilev, A.A.; Vergeles, P.S.; Yakimov, E.E.; Chernykh, A.V.; Ren, F.; Pearton, S.J. Experimental estimation of electron–hole pair creation energy in β-Ga2O3. Appl. Phys. Lett. 2021, 118, 202106. [Google Scholar] [CrossRef]
- Zoroddu, A.; Bernardini, F.; Ruggerone, P.; Fiorentini, V. First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: Comparison of local and gradient- corrected density-functional theory. Phys. Rev. B 2001, 64, 045208. [Google Scholar] [CrossRef]
- Phillips, J.C. Bonds and Bands in Semiconductors; Academic Press: New York, NY, USA, 1973. [Google Scholar]
- Koide, Y.; Itoh, H.; Khan, M.R.H.; Hiramatu, K.; Sawaki, N.; Akasaki, I. Energy band-gap bowing parameter in an AlxGa1−xN alloy. J. Appl. Phys. 1987, 61, 4540–4543. [Google Scholar] [CrossRef]
- Ferreyra, R.A.; Zhu, C.; Teke, A.; Morkoç, H. Group III Nitride. In Springer Handbook of Electronic and Photonic Materials; Kasap, S., Capper, P., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017; pp. 743–827. [Google Scholar]
- Dridi, Z.; Bouhafs, B.; Ruterana, P. First-principles investigation of lattice constants and bowing parameters in wurtzite AlxGa1−xN, InxGa1−xN and InxAl1−xN alloys. Semicond. Sci. Technol. 2003, 18, 850–856. [Google Scholar] [CrossRef]
- Yun, F.; Reshchikov, M.A.; He, L.; King, T.; Morkoç, H.; Novak, S.W.; Wei, L. Energy band bowing parameter in Alx Ga1-x N alloys. J. Appl. Phys. 2002, 92, 4837. [Google Scholar] [CrossRef]
- Klein, C.A. Bandgap Dependence and Related Features of Radiation Ionization Energies in Semiconductors. J. Appl. Phys. 1968, 39, 2029–2038. [Google Scholar] [CrossRef]
- Autran, J.L.; Munteanu, D. Soft Errors: From Particles to Circuits; Taylor & Francis/CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Gordon, M.S.; Goldhagen, P.; Rodbell, K.P.; Zabel, T.H.; Tang, H.H.K.; Clem, J.M.; Bailey, P. Measurement of the Flux and Energy Spectrum of Cosmic-Ray Induced Neutrons on the Ground. IEEE Trans. Nucl. Sci. 2004, 51, 3427–3434. [Google Scholar] [CrossRef]
- Goldhagen, P. Cosmic-Ray Neutrons on the Ground and in the Atmosphere. MRS Bull. 2003, 28, 131–135. [Google Scholar] [CrossRef]
- Rinard, P. Neutron Interactions with Matter. Los Alamos Technical Report, 1991. Available online: https://www.gammaexplorer.com/lanlreports/lanl1_a/lib-www/la-pubs/00326407.pdf (accessed on 15 January 2025).
- Autran, J.L.; Munteanu, D. Atmospheric Neutron Radiation Response of III-V Binary Compound Semiconductors. IEEE Trans. Nucl. Sci. 2020, 67, 1428–1435. [Google Scholar] [CrossRef]
- TENDL-2021. TALYS-Based Evaluated Nuclear Data Library. Available online: https://tendl.web.psi.ch/tendl_2021/tendl2021.html (accessed on 8 November 2024).
- Serre, S.; Semikh, S.; Uznanski, S.; Autran, J.L.; Munteanu, D.; Gasiot, G.; Roche, P. Geant4 Analysis of n-Si Nuclear Reactions From Different Sources of Neutrons and Its Implication on Soft-Error Rate. IEEE Trans. Nucl. Sci. 2012, 59, 714–722. [Google Scholar] [CrossRef]
- Geant4 General Particle Source (GPS). Available online: https://www.fe.infn.it/u/paterno/Geant4_tutorial/slides_further/GPS/GPS_manual.pdf (accessed on 20 November 2024).
- Geant4 Version 4.9.4. Available online: http://geant4.in2p3.fr/IMG/pdf_PhysicsLists.pdf (accessed on 20 November 2024).
- Munteanu, D.; Autran, J.L. Modeling and Simulation of Single-Event Effects in Digital Devices and ICs. IEEE Trans. Nucl. Sci. 2008, 55, 1854–1878. [Google Scholar] [CrossRef]
- Baker, D.E. Graphite as a neutron moderator and reflector material. Nucl. Eng. Des. 1971, 14, 413–444. [Google Scholar] [CrossRef]
- Gaillard, R. Single Event Effects: Mechanisms and Classification. In Soft Errors in Modern Electronic Systems; Nicolaidis, M., Ed.; Springer: New York, NY, USA, 2011. [Google Scholar]
- Coronetti, A.; Alía, R.G.; Lucsanyi, D.; Letiche, M.; Kastriotou, K.; Cazzaniga, C.; Frost, C.D.; Saigné, F. An Analysis of the Significance of the 14N(n,p)14C Reaction for Single-Event Upsets Induced by Thermal Neutrons in SRAMs. IEEE Trans. Nucl. Sci. 2023, 70, 1634–1642. [Google Scholar] [CrossRef]
- Leroy, C.; Rancoita, P.G. Principes of Radiation Interaction Matter and Detection; World Scientific Publishing: Singapore, Singapore, 2004. [Google Scholar]
- Autran, J.L.; Munteanu, D. Multiscale, Multiphysics Modeling and Simulation of Single-Event Effects in Digital Electronics: From Particles to Systems. IEEE Trans. Nucl. Sci. 2024, 71, 31–66. [Google Scholar] [CrossRef]
- Seifert, N.; Jahinuzzaman, S.; Velamala, J.; Ascazubi, R.; Patel, N.; Gill, B.; Basile, J.; Hicks, J. Soft Error Rate Improvements in 14-nm Technology Featuring Second-Generation 3D Tri-Gate Transistors. IEEE Trans. Nucl. Sci. 2012, 62, 2570–2577. [Google Scholar] [CrossRef]
- JESD89B; Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices; Revision of JESD89A. JEDEC: Arlington, VA, USA, 2021.
Semiconductor | Bandgap @ 300 K Eg (eV) | Density (g/cm3) | Number of Atoms per cm3 | Electron–Hole Pair Creation Energy Eeh (eV) |
---|---|---|---|---|
AlN | 6.2 | 3.26 | 9.579 × 1022 | 15 |
GaN | 3.4 | 6.15 | 8.85 × 1022 | 8.9 |
C (diamond) | 5.47 | 3.515 | 1.762 × 1023 | 13.4 |
β-Ga2O3 | 4.6–4.9 | 5.96 | 8.374 × 1022 | 15.6 |
Symbol | Atomic Number | Nuclide | Natural Abundance |
---|---|---|---|
C | 6 | 6-C-12 | 98.93% |
6-C-13 | 1.07% | ||
N | 7 | 7-N-14 | 99.6% |
7-N-15 | 0.4% | ||
O | 8 | 8-O-16 | 97.76% |
8-O-17 | 0.04% | ||
8-O-18 | 0.20% | ||
Al | 13 | 13-Al-27 | 100% |
Ga | 31 | 31-Ga-69 | 60.10% |
31-Ga-71 | 39.90% |
Material | Elastic | Inelastic | Nuclear | |
---|---|---|---|---|
AlxGa1−xN | (GaN) | 265,632 | 0 | 63,979 |
251,436 | 0 | 57,013 | ||
241,788 | 0 | 50,745 | ||
231,333 | 0 | 44,403 | ||
222,060 | 0 | 37,934 | ||
(AlN) | 211,971 | 0 | 30,612 | |
Diamond | 329,294 | 0 | 212 | |
β-Ga2O3 | 166,971 | 0 | 33,365 |
Material | Elastic | Inelastic | Nuclear | |
---|---|---|---|---|
AlxGa1−xN | (GaN) | 772,115 | 1073 | 57,363 |
612,536 | 2105 | 35,665 | ||
556,444 | 1603 | 27,826 | ||
496,213 | 1096 | 19,648 | ||
433,700 | 547 | 10,853 | ||
(AlN) | 368,779 | 29 | 1458 | |
Diamond | 609,668 | 0 | 3 | |
β-Ga2O3 | 612,955 | 951 | 48,649 |
Material | Elastic | Inelastic | Nuclear | |
---|---|---|---|---|
AlxGa1−xN | (GaN) | 99,580 | 26,984 | 38,035 |
97,357 | 24,579 | 35,306 | ||
96,615 | 21,972 | 33,248 | ||
95,736 | 19,161 | 31,156 | ||
94,702 | 16,246 | 29,236 | ||
(AlN) | 94,039 | 13,373 | 27,042 | |
Diamond | 155,705 | 9185 | 28,650 | |
β-Ga2O3 | 113,997 | 23,975 | 35,877 |
Semiconductor | GaN | Al0.6Ga0.4N | AlN | Diamond | β-Ga2O3 |
---|---|---|---|---|---|
Minimum energy to deposit a charge of 0.7 fC (keV) | 38.9 | 52.9 | 65.6 | 58.6 | 68.2 |
Part of the Neutron Spectrum | Material | Elastic | Inelastic | Nuclear |
---|---|---|---|---|
Part I | GaN | 0 | 0 | 24,328 |
Al0.6Ga0.4N | 0 | 0 | 24,498 | |
AlN | 0 | 0 | 26,081 | |
Diamond | 0 | 0 | 0 | |
β-Ga2O3 | 0 | 0 | 0 | |
Part II | GaN | 0 | 0 | 2466 |
Al0.6Ga0.4N | 14,045 | 0 | 1241 | |
AlN | 11,868 | 0 | 1254 | |
Diamond | 62,148 | 0 | 0 | |
β-Ga2O3 | 6150 | 0 | 0 | |
Part III | GaN | 54,687 | 18,844 | 35,884 |
Al0.6Ga0.4N | 58,693 | 13,797 | 30,101 | |
AlN | 62,901 | 11,777 | 26,884 | |
Diamond | 133,399 | 9124 | 28,641 | |
β-Ga2O3 | 52,880 | 11,863 | 33,917 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munteanu, D.; Autran, J.-L. Single-Particle Radiation Sensitivity of Ultrawide-Bandgap Semiconductors to Terrestrial Atmospheric Neutrons. Crystals 2025, 15, 186. https://doi.org/10.3390/cryst15020186
Munteanu D, Autran J-L. Single-Particle Radiation Sensitivity of Ultrawide-Bandgap Semiconductors to Terrestrial Atmospheric Neutrons. Crystals. 2025; 15(2):186. https://doi.org/10.3390/cryst15020186
Chicago/Turabian StyleMunteanu, Daniela, and Jean-Luc Autran. 2025. "Single-Particle Radiation Sensitivity of Ultrawide-Bandgap Semiconductors to Terrestrial Atmospheric Neutrons" Crystals 15, no. 2: 186. https://doi.org/10.3390/cryst15020186
APA StyleMunteanu, D., & Autran, J.-L. (2025). Single-Particle Radiation Sensitivity of Ultrawide-Bandgap Semiconductors to Terrestrial Atmospheric Neutrons. Crystals, 15(2), 186. https://doi.org/10.3390/cryst15020186