
Academic Editor: Ludmila Isaenko

Received: 30 January 2025

Revised: 11 February 2025

Accepted: 13 February 2025

Published: 15 February 2025

Citation: Munteanu, D.; Autran, J.-L.

Single-Particle Radiation Sensitivity of

Ultrawide-Bandgap Semiconductors

to Terrestrial Atmospheric Neutrons.

Crystals 2025, 15, 186. https://

doi.org/10.3390/cryst15020186

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Single-Particle Radiation Sensitivity of Ultrawide-Bandgap
Semiconductors to Terrestrial Atmospheric Neutrons
Daniela Munteanu * and Jean-Luc Autran

Univ Rennes, CNRS, IPR (UMR 6251), 35042 Rennes CEDEX, France; jean-luc.autran@univ-rennes.fr
* Correspondence: daniela.munteanu@univ-rennes.fr

Abstract: Semiconductors characterized by ultrawide bandgaps (UWBGs), exceeding the
SiC bandgap of 3.2 eV and the GaN bandgap of 3.4 eV, are currently under focus for appli-
cations in high-power and radio-frequency (RF) electronics, as well as in deep-ultraviolet
optoelectronics and extreme environmental conditions. These semiconductors offer nu-
merous advantages, such as a high breakdown field, exceptional thermal stability, and
minimized power losses. This study used numerical simulation to investigate, at the
material level, the single-particle radiation response of various UWBG semiconductors,
such as aluminum gallium nitride alloys (AlxGa1−xN), diamond, and β-phase gallium
oxide (β-Ga2O3), when exposed to ground-level neutrons. Through comprehensive Geant4
simulations covering the entire spectrum of atmospheric neutrons at sea level, this study
provides an accurate comparison of the neutron radiation responses of these UWBG semi-
conductors focusing on the interaction processes, the number and nature of secondary
ionizing products, their energy distributions, and the production of electron–hole pairs at
the origin of single-event effects (SEEs) in microelectronics devices.

Keywords: atmospheric neutrons; neutron–semiconductor interactions; ultrawide-bandgap
semiconductors; aluminum gallium nitride alloys; diamond; gallium oxide; nuclear
reactions; Geant4; numerical simulations; single-event effects

1. Introduction
Ultrawide-bandgap (UWBG) semiconductors are materials characterized by an excep-

tionally wide bandgap, far exceeding that of conventional semiconductors such as silicon
(1.1 eV), but also typically larger than that of wide-bandgap semiconductors such as silicon
carbide (3.2 eV) or gallium nitride (3.4 eV) [1–3]. This offers the advantage of tolerating
high fields, since the electric field of avalanche breakdown increases super-linearly with
increases in the bandgap energy [1,4,5]. As a result, UWBG semiconductors are particularly
well suited for high-power electronics applications such as electric vehicles, motor drives,
and power grids, applications that involve high voltages and high power levels [6–11].
Additionally, UWBG semiconductors show high thermal stability, which makes them ideal
for use in harsh environments, such as aerospace, automotives, and power systems, where
extreme temperatures and radiation may be present [2]. UWBG semiconductors also exhibit
high electron mobility [12,13], facilitating fast electron transport. This property is valuable
for high-frequency and high-power electronic applications, including radio-frequency (RF)
devices [14]. Furthermore, some UWBG semiconductors demonstrate unique optoelectronic
properties, such as high transparency in the ultraviolet (UV) region, making them suitable
for UV optoelectronic devices, sensors, and detectors [1,8,15,16]. Beyond these applica-
tions, UWBG semiconductors are valued for their potential to improve energy efficiency in
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electronic devices, reducing power losses and enhancing overall performance. They also
play a role in emerging technologies, such as advanced sensors, quantum computing, and
next-generation electronic devices [17].

In terms of single-particle radiation sensitivity, UWBG semiconductors are expected
to have superior radiation hardness because radiation tolerance scales nonlinearly with
the bandgap of the materials [2]. UWBG semiconductors also exhibit a stronger tolerance
to cumulative neutron-induced displacement effects due to their higher displacement
energy thresholds, typically higher than those of silicon or even silicon carbide [18]. This
resilience ensures that semiconductor devices made from UWBG materials can withstand
harsh radiation conditions without significant degradation in performance [2,19]. For
electronic systems used in space, in nuclear power plants, and in other environments
where exposure to radiation is a concern, radiation tolerance both to single-particle effects
and cumulated displacement effects is of critical importance. Despite the advantages of
UWBG semiconductors for applications in radiation environments, there is little literature
addressing the effects of single-particle radiation (i.e., single events) on UWBG materials
and devices in contrast to a significant number of publications focusing on cumulative (i.e.,
many particles) displacement effects. This is primarily due to the difficulties associated
with the quality of the materials and the fabrication techniques [17]. Most of these studies
are devoted to the effects of radiation on UWBG semiconductor-based devices [19–22],
and few studies in the domain of single events have been conducted at the material level.
However, the way a material reacts to radiation provides important information about
how devices made from that material will respond [23], since these calculations provide
a first estimate of the radiation behavior of future devices and circuits that are not yet
available or technologically mature enough for real-world testing. The purpose of this
paper is then to study the response to single-particle radiation of aluminum gallium nitride
alloys (AlxGa1−xN), diamond, and β-phase gallium oxide (β-Ga2O3) exposed to the natural
background of atmospheric neutrons at sea level. This study focuses on the primary
neutron interactions with the target material that produce ionizing secondary particles at
the origin of single events in components and circuits (these single events occur almost
simultaneously with the interaction of neutrons in the material). It does not cover the issue
of the cumulative effects of these interactions, which can cause displacement effects (these
effects only occur after a certain exposure time required to obtain cumulated doses of at
least typically 1011 n/cm2) [24]. These three semiconductors are among the most widely
studied UWBG materials because they can be reliably doped, substrates are available for
thin-film growth [1], and devices have been successfully demonstrated [7,25–30]. Only
a few studies [31–33] have explored the effects of neutron irradiation on diamond and
β-Ga2O3 at the material level (i.e., without integration into electronic devices). To the best
of our knowledge, no published research exists on the sensitivity of AlxGa1−xN materials
to neutron irradiation. In the present paper, we investigate and compare the single-particle
radiation response of pure AlxGa1−xN, diamond, and β-Ga2O3 materials (intrinsic, i.e.,
undoped, semiconductors) to cosmic ray-induced neutrons produced in the atmosphere at
sea level. Previous results on diamond suffer from several limitations regarding the energy
of the incident neutrons and the energy of the secondary particles resulting from neutron–
diamond interactions. In fact, only the high-energy neutron part of the neutron spectrum
was considered in [31], and the study in [33] included only monoenergetic incoming
neutrons of 2.45 and 14 MeV from deuterium–deuterium and deuterium–tritium fusion
reactions. In addition, a low energy threshold was used in [31], which limited the energy of
the secondary particles included in the particle count and analysis. Finally, a small number
of incident neutrons was simulated in [31], which could affect the event statistics and
simulation results. The limitations of previous studies are overcome in the present work,
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since (i) we considered the full spectrum of neutrons at sea level, with neutron energies
ranging from thermal to GeV; (ii) we simulated a virtual irradiation of a very large number
of incident neutrons (1.09 × 109 neutrons, equivalent to 2.5 × 107 h of exposure in the
natural radiation field at sea level from thermal to high-energy neutrons); (iii) no constraint
(i.e., filtering) was considered for the energy of the secondary products. The Monte Carlo
radiation transport code Geant4 [34–36] was considered to perform the simulation. This
code was used to create a dedicated atmospheric neutron source and to construct large
databases containing exhaustive information on tens of thousands of neutron interactions
with each of the UWBG semiconductors under study. The number and type of interactions
(elastic and inelastic scattering and nuclear reactions) along with the number and type of
secondary products (protons, alpha particles, fragments) produced in these reactions were
quantified and analyzed to compare the atmospheric neutron susceptibilities of AlxGa1−xN,
diamond, and β-Ga2O3 semiconductors.

The paper is organized as follows: Section 2 presents an overview of the bulk properties
of AlxGa1−xN, diamond, and β-Ga2O3 materials, as well as the full spectrum of atmospheric
neutrons at sea level employed as the source of neutrons in the simulation. This is followed
by a detailed explanation of the Monte Carlo numerical simulation of neutron–target
interactions using Geant4. Section 3 presents in detail the results of these numerical
simulations, focusing on the number and type of interactions, and also on the number and
nature of the generated secondary products. This section also includes a comprehensive
analysis concerning the distribution in energy of secondary products for each of the three
parts of the spectrum of atmospheric neutrons (thermal and low-energy, intermediate-
energy, and high-energy neutrons). Finally, Section 4 includes a complete discussion of all
the results, with a special focus on the responses of AlxGa1−xN, diamond, and β-Ga2O3

materials to atmospheric neutrons, particularly concerning the number of interactions that
could potentially trigger substantial single-event effects (SEEs) in devices or circuits.

2. Materials and Methods
2.1. Material Properties

The density and bandgap energy of the materials studied in this work are presented in
Figure 1 and Table 1 [31,37–39]. AlxGa1−xN is a ternary alloy and its density is calculated
using Vergard’s law [37,40], which describes the linear dependence of the lattice parameters
with the Al content, x (0 ≤ x ≤ 1). The values of the Al content x considered in this work
are: 0 (GaN), 0.2, 0.4, 0.6, 0.8, and 1 (AlN). Figure 1 shows the variation in the density of
AlxGa1−xN as a function of x, with x varying from 0 to 1. The values for x = 0 (GaN) and
x = 1 (AlN) are also included in Table 1.
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Table 1. Main properties of AlN, GaN, diamond, and β-Ga2O3 at 300 K.

Semiconductor Bandgap @ 300 K
Eg (eV) Density (g/cm3) Number of Atoms

per cm3
Electron–Hole Pair

Creation Energy Eeh (eV)

AlN 6.2 3.26 9.579 × 1022 15
GaN 3.4 6.15 8.85 × 1022 8.9

C (diamond) 5.47 3.515 1.762 × 1023 13.4
β-Ga2O3 4.6–4.9 5.96 8.374 × 1022 15.6

It has been experimentally demonstrated that the bandgap energy of ternary alloys
such as AlxGa1−xN follows a quadratic interpolation of the bandgaps of the corresponding
binary compounds [41,42]. In the case of an AlxGa1−xN alloy, the binary compounds are
AlN and GaN and its bandgap is given by the equation proposed by [43]:

EAlxGa1−x N
g = xEAlN

g + (1 − x)EGaN
g − x(1 − x)b (1)

In this model, EAlN
g is the bandgap energy of GaN, EAlN

g is the bandgap energy of AlN,
and b is a bowing parameter that accounts for deviations from linear interpolation between
the two binary compounds. For AlxGa1−xN, the bowing parameter has been reported to
be between 0.8 and 1.3 eV [42–45]. The bandgap energy of AlxGa1−xN as a function of the
Al content x, as given by Equation (1), is shown in Figure 1. The bandgap of AlxGa1−xN
increases with the Al content x from 3.4 eV (GaN) to 6.2 eV (AlN).

Another important parameter in this study for the analysis of the material sensitivity to
neutrons is the mean energy required to create electron–hole pairs, Eeh. As will be explained
later in Section 4, Eeh is used to evaluate the conversion of the energy deposited by an
ionizing particle into free charge in a given target material. The mean energy for electron–
hole pair creation is a material-specific constant typically obtained from experimental
measurements or determined from band structure and quantum transport simulations.
Klein’s phenomenological model, which suggests a linear relationship between the bandgap
energy and Eeh in semiconductor materials [46], can be used to approximate Eeh when
experimental or accurate simulated values are not available for a particular semiconductor
material. The mean energy for the creation of an electron–hole pair is indicated in Table 1
for AlN, GaN, diamond, and β-Ga2O3.

Table 2 gives the natural isotopic configuration of the atoms that compose the materials
studied in this work: carbon, nitrogen, oxygen, aluminum, and gallium. The natural
abundance of each isotope is also included in this table. Aluminum (Z = 13) has one isotope;
carbon (Z = 6), nitrogen (Z = 7), and gallium (Z = 31) have two isotopes; and oxygen (Z = 8)
has three isotopes.

Table 2. Natural abundance of C, N, O, Al, and Ga isotopes considered in this paper.

Symbol Atomic Number Nuclide Natural Abundance

C 6
6-C-12 98.93%
6-C-13 1.07%

N 7
7-N-14 99.6%
7-N-15 0.4%

O 8
8-O-16 97.76%
8-O-17 0.04%
8-O-18 0.20%

Al 13 13-Al-27 100%

Ga 31
31-Ga-69 60.10%
31-Ga-71 39.90%
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2.2. Atmospheric Neutron Source

Atmospheric neutrons at sea level originate from the interactions of primary cosmic
rays with air particles in the Earth’s upper atmosphere. These interactions create atmo-
spheric showers, producing secondary products (particles) that arrive at sea level [47]. The
most numerous secondary particles in atmospheric showers are muons, but neutrons are
second. Neutrons represent the most serious threat to ground-based electronics. The main
reason is that these particles are not charged, which allows them to penetrate deep into
circuit materials where they can interact with atoms, producing charged products such as
recoil nuclei or secondary ions. These mechanisms are explained in Sections 2.3 and 3.

In this work, we used the full differential flux of atmospheric neutrons produced
by cosmic rays recorded at Yorktown Heights [48,49] as the reference input spectrum.
This atmospheric neutron spectrum is shown in Figure 2 and has been introduced into
our simulator for simulating the interactions of neutrons with the materials considered
in this work. The neutron spectrum is partitioned into three domains depending on the
neutron energy (Figure 2). Part I includes energies less than 1 eV and refers to thermal
and low-energy neutrons. Part II, for neutron energies in the range 1 eV to 1 MeV, refers
to intermediate-energy neutrons. Part III, for energies above 1 MeV, corresponds to high-
energy neutrons. The cumulated flux across the entire spectrum is 43.6 neutrons per cm2

per hour at sea level (for medium solar activity, outside) [47]. The percentages of the total
neutron flux of the three regions of the spectrum are: 17.4% (7.6 neutrons per cm2 per hour)
for part I, 36.7% (16 neutrons per cm2 per hour) for part II, and 45.9% (20 neutrons per cm2

per hour) for part III. These values are indicated in Figure 2.
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Figure 2. Spectrum of the atmospheric neutron (lethargic representation) at sea level recorded on the
roof of the IBM Watson Research Center main building [48] in New York City. Experimental data
courtesy of Paul Goldhagen (U.S. Department of Homeland Security). Percentages of the total flux of
neutrons related to each domain of the spectrum are also indicated.

2.3. Neutrons Interaction with Matter

As uncharged particles, neutrons do not undergo Coulomb interactions like charged
particles. Neutrons do not interact with orbiting electrons and can then pass across elec-
tronic clouds with no interference, i.e., they cannot directly ionize matter. Unlike charged
particles, neutrons have very weak electromagnetic interactions. As a result, they have a
high degree of penetration and can travel long distances through matter without being
obstructed. Neutrons can interact with matter by interacting with atomic nuclei through
various mechanisms depending on their energy. Although the probabilities of these interac-
tions are very low, they should not be neglected when studying the radiation sensitivity of
electronic materials. This is because these interactions produce secondary charged particles,
which can cause single events through the indirect ionization mechanism.
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The interactions of neutrons with atomic nuclei are governed by two principal physical
mechanisms: scattering and capture. Additionally, scattering mechanisms can be classified
as elastic or inelastic [47,50]. In elastic scattering, the particles involved remain unchanged
and the recoiling nucleus is identical to the target nucleus. Inelastic scattering is similar but
involves an internal rearrangement in the target nucleus, resulting in an excited state and
subsequent release of radiation. Beyond scattering, an incoming neutron may be absorbed
or captured by the nucleus of the target material. These interactions lead to different
possible reactions and the emission of different particles and are collectively known as
nuclear reactions (or nonelastic interactions).

A quick way of calculating the total number of interactions occurring between neutrons
and a material in a given energy domain is to calculate the reaction rate Rn (number of
reactions per second) using [23,51]

Rn = Nttarget

∫ Emax

Emin

σ(E)
dφ

dE
dE (2)

where N is the number of atoms per cm3 of the material studied (values given in Table 1),
ttarget is the target thickness (expressed in cm), σ(E) is the neutron cross-section of the
material, dφ/dE is the differential neutron flux (MeV−1·cm−2·s−1), and Emin and Emax are
the limits of the energy domain taken into account. In this work, we used the neutron cross-
sections provided by the TENDL nuclear data library [52] (which includes information
about neutron cross-sections up to 200 MeV). The multiplication of Rn by the time period
(in seconds) gives the number of reactions for that time period.

2.4. Geant4 Simulation Details

We simulated the interactions between atmospheric neutrons and the materials under
study following a procedure used in previous studies [31,51]. The simulations were per-
formed using the Monte Carlo radiation transport code Geant4 [32–34], version 4.9.4 patch
01, and taking into account the standard package of physics lists QGSP_BIC_HP [35,36].
More information on the physical processes used for these simulations can be found
in [31,32,51].

To simulate the interactions between atmospheric neutrons and materials, pure bulk
material targets were subjected to virtual neutron irradiation. Eight materials have been
simulated, including six AlxGa1−xN alloys (with x varying from 0 to 1, by step of 0.2), in
addition to diamond and β-Ga2O3. We generated one target for each material, where each
target had a parallelepiped geometry, with a surface area of 1 cm2 and a thickness of 20 µm,
which are the usual dimensions of the sensitive volume of an integrated circuit. Specifically,
we chose a thickness of 20 µm because any reaction products that generate an electrical
charge beyond this depth would not drift or diffuse into the active zone (i.e., the sensitive
region near the surface of the semiconductor). This means that these reaction products
would not contribute to creating SEE in the circuit [53]. Each of the eight material targets
was exposed to a virtual neutron irradiation with neutrons arriving at normal incidence
on the target and an energy distribution corresponding to the spectrum of atmospheric
neutrons over the energy parts I, II, and III as described earlier in Section 2.2 (Figure 2).
This neutron flux spectrum was introduced into Geant4 via the General Particle Source
(GPS) module [54,55] for the random generation of incoming neutrons (perpendicular
to the target layer) mimicking this natural neutron background. As explained in the
Introduction, a very large number of incoming neutrons is necessary to ensure the accuracy
of the simulation results. In this work, for each part of the neutron spectrum, we took into
account a number of incident neutrons corresponding to 2.5 × 107 h of irradiation due to
the natural flux of neutrons in the atmosphere at sea level. This exposure time is equivalent
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to the following number of primary incident neutrons produced by the Geant4 GPS source:
1.9 × 108 neutrons for part I of the spectrum, 4 × 108 neutrons for part II of the spectrum,
and 5 × 108 neutrons for part III of the spectrum.

A Geant4 simulation run generates a database, which is an output file containing
extensive details of each neutron interaction with the target material. A total of 24 databases
have been generated, one for each of the eight targets and for each of the three domains of
the neutron spectrum. Each database contains information such as the type of interaction,
the spatial coordinates of the reaction point, and a full list of secondary particles produced.
For each emitted particle, the output also includes its energy and emission direction vector.
Certain secondary particles, such as positrons, gamma photons, neutral pions, neutrons,
or mesons, have a negligeable impact on electronics in terms of electron pair creation and
SEEs [56]. For this reason, we have intentionally eliminated these particles, which have
weak ionizing characteristics, from the calculated databases. Rare secondary particles,
such as charged pions, are also not included in the output file. Thus, the output databases
uniquely include lightly charged particles (protons and alpha particles) and other ionizing
fragments with an atomic number (Z) superior to 2.

3. Results
3.1. Number of Interactions

Figure 3 shows the total number of neutron interactions with the different material
targets studied for an equivalent exposure time of 2.5 × 107 h, obtained from the Geant4
simulations. Neutrons with an energy distribution following the full neutron flux (Figure 2)
are considered in this figure. The results show that GaN is the material that produces the
highest number of interactions, with diamond in second place, while AlN has the lowest
number of interactions. In AlxGa1−xN materials, the number of interactions is reduced by
increasing the percentage x of Al (i.e., reducing the percentage of Ga). β-Ga2O3 has a lower
number of interactions than diamond but a higher number than the AlxGa1−xN alloys with
x > 0.2.
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Figure 3. Total number of interactions generated by Geant4 simulations of AlxGa1−xN, diamond,
and β-Ga2O3 bulk targets under the full spectrum of atmospheric neutron shown in Figure 2 for an
equivalent exposure time of 2.5 × 107 h.

To go further, we have shown in Figure 4 the respective contributions to the number
of interactions from each domain of the neutron spectrum (part I, part II, and part III, as
indicated in Figure 2).
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Figure 4. Number of neutron interactions in AlxGa1−xN, diamond, and β-Ga2O3 bulk targets
subjected to part I, II, or III of the spectrum of atmospheric neutrons (Figure 2) over 2.5 × 107 h.

For all materials, part II has the largest contribution to the number of interactions
with at least 50% of the total number of interactions (64% for β-Ga2O3, 50% for AlN, 54%
for diamond, and 62% for GaN). Part I has the second largest and part III the smallest
contribution to the total number of interactions. To explain this result, we used Equation
(2) to quickly calculate the number of neutron interactions with the materials under consid-
eration. According to this formula, the large contribution of part II can be explained by the
larger neutron cross-section of the materials for neutrons of intermediate energies and/or
by a stronger differential flux in this neutron energy range. For example, for diamond, the
neutron cross-section in part II is much larger than in part III, as shown in Figure 5. This
figure plots the neutron cross-section of diamond obtained from the TENDL nuclear data
open library [52] as a function of neutron energy. For part I, the neutron cross-section is of
the same order of magnitude as for part II, but the differential flux is lower, leading to a
smaller number of interactions. This is corroborated by the rapid calculation of the number
of interactions (from Equation (2)) for each part of the energy range. The results of the
calculations for diamond indicate 298,724 interactions for part I, 623,244 interactions for
part II, and 182,344 interactions for part III, which are in good agreement with the results of
the Geant4 simulations (329,506 interactions for part I, 609,671 interactions for part II, and
193,540 interactions for part III).
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3.2. Type of Interactions

A detailed analysis with respect to the type of interactions is presented in Figure 6,
which shows the number of interactions associated with each mechanism, more precisely
to elastic and inelastic scattering and to nuclear reactions. This figure indicates that elastic
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scattering is the dominant mechanism for all materials, accounting for at least 85% of the
total number of interactions. This percentage is as high as 96% for diamond, which is
known to be a very effective neutron moderator [57]. The number of nuclear reactions is
much lower, below 12% for all materials, and the number of events of inelastic scattering is
negligible, below 3%.
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diamond and β-Ga2O3 bulk targets under the full spectrum of atmospheric neutrons shown in
Figure 2 for an equivalent exposure time of 2.5 × 107 h.

For AlxGa1−xN alloys, the numbers of elastic, inelastic, and nuclear interactions
decrease as the percentage x of Al increases (i.e., the percentage of Ga decreases). This
leads to the results shown previously in Figure 3, where the total number of interactions
decreases as x increases. Thus, among the AlxGa1−xN alloys, AlN has the lowest interaction
count for all mechanisms, much lower than GaN. For example, AlN produces 40.6% less
elastic scattering than GaN, half as much inelastic scattering, and a 63% reduction in the
number of nuclear reactions.

Details of the number of events for each interaction mechanism across all the materials
are given in Table 3, Table 4, and Table 5 for domains I, II, and III of the spectrum of atmo-
spheric neutrons, respectively. Analysis of these data shows that for neutrons with thermal
and low energies (part I of the spectrum, Table 3), β-Ga2O3 has the lowest interaction
number of all materials, followed by AlN in second place, while diamond and GaN have
the highest interaction numbers due to a very high number of events of elastic scattering.
Note that for part I of the spectrum, there is no inelastic scattering (as shown in Table 3)
because the neutron energy is below the energy threshold required for this mechanism to
occur.

Table 3. Number of events of elastic and inelastic scattering and nuclear reactions in AlxGa1−xN,
diamond, and β-Ga2O3 bulk targets exposed to part I (neutron energy less than 1 eV) of the spectrum
of atmospheric neutrons (Figure 2) for an equivalent exposure time of 2.5 × 107 h.

Material Elastic Inelastic Nuclear

AlxGa1−xN

x = 0 (GaN) 265,632 0 63,979
x = 0.2 251,436 0 57,013
x = 0.4 241,788 0 50,745
x = 0.6 231,333 0 44,403
x = 0.8 222,060 0 37,934
x = 1 (AlN) 211,971 0 30,612

Diamond 329,294 0 212

β-Ga2O3 166,971 0 33,365
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Table 4. Number of events of elastic and inelastic scattering and nuclear reactions in AlxGa1−xN,
diamond, and β-Ga2O3 bulk targets subjected to part III (neutron energy between 1 eV and 1 MeV)
of the spectrum of atmospheric neutrons (Figure 2) for an equivalent exposure time of 2.5 × 107 h.

Material Elastic Inelastic Nuclear

AlxGa1−xN

x = 0 (GaN) 772,115 1073 57,363
x = 0.2 612,536 2105 35,665
x = 0.4 556,444 1603 27,826
x = 0.6 496,213 1096 19,648
x = 0.8 433,700 547 10,853
x = 1 (AlN) 368,779 29 1458

Diamond 609,668 0 3

β-Ga2O3 612,955 951 48,649

Table 5. Number of events of elastic and inelastic scattering and nuclear reactions in AlxGa1−xN,
diamond, and β-Ga2O3 bulk targets subjected to part III (neutron energy higher than 1 MeV) of the
spectrum of atmospheric neutrons (Figure 2) for an equivalent exposure time of 2.5 × 107 h.

Material Elastic Inelastic Nuclear

AlxGa1−xN

x = 0 (GaN) 99,580 26,984 38,035
x = 0.2 97,357 24,579 35,306
x = 0.4 96,615 21,972 33,248
x = 0.6 95,736 19,161 31,156
x = 0.8 94,702 16,246 29,236
x = 1 (AlN) 94,039 13,373 27,042

Diamond 155,705 9185 28,650

β-Ga2O3 113,997 23,975 35,877

Table 4 shows that interactions with intermediate-energy neutrons (part II of the
spectrum) are the least numerous for AlN, which produces more than half as much elastic
scattering as GaN and has a very low number of events of inelastic scattering and nuclear
reactions. As for part I of the spectrum, the number of interactions decreases as the Al
content x increases in the AlxGa1−xN alloys. Of all the materials, GaN has the highest
number of interactions with neutrons of intermediate energy, which is dominated to a very
large extent by elastic scattering. For high-energy neutrons (Table 5), AlN exhibits the
lowest number of events of elastic scattering and nuclear reactions, and diamond shows
the lowest number of events of inelastic scattering. However, diamond has the highest
number of events of elastic scattering for this neutron energy range due to its neutron
moderator properties.

3.3. Number and Nature of Secondary Products

All of the above-mentioned interactions between incoming neutrons and target mate-
rials produce either a single secondary product or multiple. Figure 7 shows the number
of secondary products that result from interactions between neutrons with energies in
domains I, II, and III of the spectrum of atmospheric neutrons and AlxGa1−xN, diamond,
or β-Ga2O3 targets. These results show that, for all the materials, the highest number
of products is obtained for interactions with neutrons in part II of the spectrum, and the
smallest number of products is obtained for interactions with neutrons in part III. Of the
materials considered here, GaN produces the highest number of secondary products for
parts I and II of the spectrum, and diamond produces the highest number of products for
part III. The lowest number of products is obtained for β-Ga2O3 in part I of the spectrum
and for AlN in parts II and III. In addition, Figure 7 shows that for AlxGa1−xN alloys, the
number of secondary products decreases as Al content x increases for all three parts of
the spectrum.
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Figure 7. Number of secondary products in AlxGa1−xN, diamond, and β-Ga2O3 bulk targets sub-
jected to part I, II, or III of the spectrum of atmospheric neutrons (Figure 2) over 2.5 × 107 h.

The total number of secondary products generated during an interaction is referred
to as “secondary product shower multiplicity”, as each interaction initiates a cascade of
ionizing particles. In this work, secondary products with low ionizing properties such
as neutrons, gamma photons, electrons, pions, positrons, and mesons were eliminated
from the databases (see explanations in Section 2.4). They were then not counted when
calculating the shower multiplicity. As such, a multiplicity of 1 signifies the emission of
a single ionizing product and is associated with elastic scattering, inelastic scattering, or
particular neutron capture event (neutron capture (n,γ) reactions emitting gamma photons
and recoil products, for example, 69Ga(n,γ)70Ga; see also Section 3.4). In contrast, higher
multiplicities indicate that a nuclear reaction is involved, which results in the generation of
two or more ionizing secondary products. The number of interactions versus the shower
multiplicity for AlxGa1−xN alloys, diamond, and β-Ga2O3 targets subjected to the full
spectrum of atmospheric neutrons is shown in Figure 8. These results show that for all
the materials, the number of interactions that lead to a single product (shower multiplicity
of 1) is by far the highest. For all the materials, more than 90% of the total number of
interactions have a shower multiplicity of 1. This is consistent with previous results on
the number of elastic and inelastic scattering events reported in Figure 6. The number
of interactions with a shower multiplicity greater than 1 is much lower, which is again
consistent with the number of nuclear reactions reported previously. We also notice that
the number of interactions decreases as the shower multiplicity increases, and beyond a
certain multiplicity there are no more interactions.
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Looking at reactions that produce multiple fragments, events with a multiplicity of
four or more account for less than 0.5% of the occurrences across all materials. Despite their
rarity, high-multiplicity events are important because they can produce single events that
can affect multiple sensitive regions within a device or a circuit. For shower multiplicities
above 11, the statistical relevance of such events is significantly reduced and may be affected
by the number of incident neutrons, as discussed in [31].

A detailed analysis of the exact nature of the secondary products is presented in
Figure 9, which shows the number of products for each atomic number Z. For the sake
of simplicity, only three AlxGa1−xN alloys, GaN, Al0.6Ga0.4N, and AlN, are considered
in addition to diamond and β-Ga2O3. As usual for neutron–matter interactions [58], the
range of atomic numbers of the secondary products extends from 1 (proton) to the highest
atomic number present in the target material. In this study, the maximum Z values are
Z = 6 for diamond, Z = 13 for AlN, and Z = 31 for the other AlxGa1−xN alloys and for
β-Ga2O3. However, a few nitrogen atoms are produced when diamond interacts with
neutrons, as well as a few germanium atoms when gallium-containing materials interact
with neutrons. The explanation is that rare transmutation reactions can produce products
with higher atomic numbers [23]. In our simulations, which involve a very large number of
incident neutrons, this phenomenon is clearly visible (in Figure 9), with some carbon nuclei
being transmuted into nitrogen, some aluminum nuclei being transmuted into silicon, and
some gallium nuclei being transmuted into germanium (similar results have already been
reported in [23]).
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Figure 9 shows that for each of the materials examined in this study, the most com-
monly produced secondary particles are recoil products generated by the elastic or inelastic
scattering of neutrons with the nuclei of the semiconductor target or by neutron capture
in (n,γ) reactions. For compound materials, the recoil nuclei correspond to the different
species that compose the material: in the case of AlN, the recoil nuclei are Al and N; for
GaN, the recoil nuclei are Ga and N; for all other AlxGa1−xN alloys, the recoil nuclei are
Al, Ga, and N; and in the case of β-Ga2O3, the recoil nuclei are Ga and O. The second
most abundant secondary products are protons for all materials except diamond, where
they are alpha particles. For AlxGa1−xN alloys, carbon (more precisely 14C nuclei) is the
third most abundant secondary product. For diamond, protons are in third place, and for
β-Ga2O3, alpha particles are third. Much smaller quantities of other secondary products
are produced.
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In the specific case of AlxGa1−xN alloys, the high concentration of protons and 14C is
largely due to the interaction of neutrons with nitrogen following the reaction 14N(n,p)14C.
The neutron capture process involving nitrogen nuclei can lead to the generation of sec-
ondary particles, which pose a significant challenge to the radiation reliability of materials
or devices containing nitrogen. This concern has been addressed in a recent study [59]
that demonstrated its impact within silicon technologies using nitride layers. The issue is
then particularly relevant to devices based on AlxGa1−xN alloys. When nitrogen captures
neutrons, it produces secondary products such as energetic protons with an energy of 584
keV and 14C nuclei with an energy of 42 keV. These secondary products can transfer signifi-
cant energy to the semiconductor material. Specifically, each 584 keV proton can induce an
electrical charge transfer of more than 10 fC, while 42 keV 14C nuclei can transfer nearly
0.8 fC. These energy transfers are substantial and can result in large amounts of charge
deposited within the material, potentially affecting device performance and reliability
under radiation exposure.

A final comment concerns the number of secondary products for each Z. Figure 9
shows that at low Z values (Z between 2 and 6), diamond produces a much larger number
of secondary products than any of the other materials investigated here due to its much
higher atomic concentration. When Z is between 8 and 13, AlN produces more secondaries
than Al0.6Ga0.4N, with these secondary products coming from reactions between neutrons
and Al atoms, because neutron–Ga interactions do not produce products in this Z range.
Since Al has a concentration that is 74.1% higher in AlN than in Al0.6Ga0.4N, the number of
secondary products is thus higher in AlN than in Al0.6Ga0.4N. For Z > 14, only the reactions
of neutrons with GaN, Al0.6Ga0.4N, and β-Ga2O3 produce secondary products, which are
the result of nuclear reactions between neutrons and Ga atoms. For this Z range, GaN has
the highest production of secondary products, as shown in Figure 9. The explanation is
that the Ga concentration in GaN is 32% higher than in Ga2O3 and almost 3.5 times higher
than in Al0.6Ga0.4N, and therefore, GaN produces more secondary products than β-Ga2O3

and especially more than Al0.6Ga0.4N.

3.4. Energy Distributions of Secondary Products

A detailed analysis of these secondary products from an energy point of view is
presented in this section. Energy histograms for each part of the spectrum and for each
material are presented in Figures 10–15. The energy distributions of the secondary products
produced in the AlxGa1−xN alloy targets by the incident thermal and low-energy neutrons
(part I of the neutron atmospheric spectrum) are shown in Figure 10a–c. For each material,
the secondary products correspond to the nuclei of the atoms of the given material and the
protons and 14C nuclei resulting from the reaction 14N(n,p)14C. It should be noted that the
secondary products can have much higher energies than the incident neutrons, which have
energies of less than 1 eV. This is due to energy release by the nucleus during (n,γ) capture
or (n,p) nuclear reactions.

Figure 10a–c show two distinct bell-shaped distributions, as well as two mono-
energetic distributions corresponding to protons and 14C nuclei. The first bell-shaped
distribution corresponds to the recoil nuclei resulting from the elastic scattering mecha-
nisms (n,n): Ga and N for GaN in Figure 10a; Al, Ga, and N for Al0.6Ga0.4N in Figure 10b;
and Al and N for AlN in Figure 10c. For all the materials, this distribution has a maximum
around 0.1 eV. The second bell-shaped distribution corresponds to the neutron capture
(n,γ) reactions emitting gamma photons and recoil products as shown in Figure 10a–c. For
example, for Al0.6Ga0.4N, these reactions are as follows: 69Ga(n,γ)70Ga and 71Ga(n,γ)72Ga
yielding 70Ga and 72Ga products with energies in the range eV to keV, 27Al(n,γ)28Al pro-
ducing a distribution of 28Al ranging from tens of eV to tens of keV, and 14N(n,γ)15N that
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produces a distribution of 15N in the range hundreds of eV to tens of keV. Finally, for all the
AlxGa1−xN alloys, two mono-energetic distributions at high energy appear, corresponding
to 14C nuclei of 42 keV and protons of 584 keV, which are secondary products of the reaction
14N(n,p)14C. As explained above, high-energy 14C nuclei and protons are a concern for the
radiation reliability of components based on materials containing nitrogen.
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Figure 10. Energy histograms (500 bins) of the secondary products generated in the AlxGa1−xN alloy
targets (1 cm2 × 20 µm) irradiated with neutrons of energies less than 1 eV (part I of the spectrum)
over 2.5 × 107 h. (a) GaN; (b) Al0.6Ga0.4N; (c) AlN.
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Figure 11. Energy histograms (500 bins) of the secondary products generated in the diamond and
β-Ga2O3 targets (1 cm2 × 20 µm) irradiated with neutrons of energies less than 1 eV (part I of the
spectrum) over 2.5 × 107 h. (a) Diamond; (b) β-Ga2O3.
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spectrum) over 2.5 × 107 h. (a) GaN; (b) Al0.6Ga0.4N; (c) AlN.
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Figure 11a,b show the energy histograms of the secondary products resulting from
interactions of thermal and low-energy incident neutrons (part I of the atmospheric neutron
spectrum) with diamond and β-Ga2O3. As in the case of AlxGa1−xN alloys, the recoil
nuclei produced during elastic scattering (C for diamond, Ga and O for β-Ga2O3) show
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a bell-shaped energy distribution with a maximum around 0.1 eV. The energies of these
recoil nuclei are less than 1 eV. Secondary products with higher energies than the incident
neutrons are the result of the following capture reactions: rare 12C(n,γ)13C reactions for
diamond and 71Ga(n,γ)72Ga, 69Ga(n,γ)70Ga, and 16O(n,γ)17O reactions for β-Ga2O3. In
diamond, the capture reaction 12C(n,γ)13C has a much lower frequency than the elastic
scattering reactions. This is also the case for the 16O(n,γ)17O reaction, which occurs only a
few times. The products of the 71Ga(n,γ)72Ga and 69Ga(n,γ)70Ga capture reactions have
a bell-shaped energy distribution with a peak around 0.2 keV. For both materials, the
maximum energy of the secondary products is around 4 keV.

Figures 12 and 13 show the energy histograms of the secondary products resulting
from the interactions of intermediate-energy neutrons (part II of the atmospheric neutron
spectrum) with the target materials. Elastic scattering (n,n) between neutrons and the
nuclei of the materials accounts for the vast majority of secondary products (over 92%
for all materials; see also Table 4). As for part I of the spectrum, for all the materials, the
secondary products are exclusively nuclei of the atoms that constitute the material; for
AlxGa1−xN alloys, there is an additional contribution of 14C nuclei and protons from the
14N(n,p)14C reaction. This reaction channel is always open, but the quantities of 14C nuclei
and protons produced are smaller than those resulting from interactions with neutrons that
have energies in part I of the spectrum. In addition, the energy domains of the products
released (protons and 14C nuclei) are larger at high energy, with a double distribution peak
for protons at 584 keV and around 0.6 MeV.

The energy histograms of the secondary products resulting from the interaction of
high-energy neutrons (part III of the atmospheric spectrum) with the target materials are
shown in Figure 14 for AlxGa1−xN alloys and Figure 15 for diamond and β-Ga2O3.

Due to the high energy of the incident neutrons in this part of the spectrum, the
number of open reaction channels is higher than for neutrons with energies in parts I and II
of the neutron spectrum. As a result, in addition to the above-mentioned capture reactions
and the elastic and inelastic scattering reactions, other nuclear reactions take place. These
additional nuclear reactions produce a wide variety of secondary products that are different
from the nuclei of the atoms contained in the materials. Of these additional secondary
products, protons and alpha particles are the most numerous; all the others are produced
in smaller quantities. For this reason, Figures 14 and 15 show energy histograms for the
following products: the nuclei of the atoms contained in the materials, protons, alpha
particles, and other products. For the AlxGa1−xN alloys, Figure 14 shows broad energy
distributions for the Ga and N nuclei in GaN (Figure 14a); for Ga, Al and N in Al0.6Ga0.4N
(Figure 14b); and for Al and N in AlN (Figure 14c). The maximum value of the distribution
is reached at about 0.05 MeV for the Ga nuclei, 0.12 MeV for the Al nuclei, and 0.3 MeV
for the N nuclei. The higher the atomic number Z, the lower the energy of the distribution
maximum. Likewise, the lighter the nucleus, the higher the energy limit of the nuclei
distribution. Protons have a similar distribution, peaking at an energy between 5 and
9 MeV. The distribution is spread over the range 100 keV to 1 GeV for all three materials.
Alpha particles have a much narrower distribution and a much lower maximum frequency
than any of the other secondary products. A rather broad distribution with a maximum
of around 2 MeV is observed for the secondary products grouped under the label ’other’
(with atomic numbers other than Z = 1, 2, 7, 13, and 31).

Similar distributions are obtained for diamond and β-Ga2O3, as shown in Figure 15.
Carbon has a very broad energy distribution, peaking around 0.3 MeV and ranging from
10 eV to 20 MeV. Carbon nuclei are the most abundant secondary products over a very
wide energy range. In β-Ga2O3, the Ga and O distributions have maximum frequencies for
energies of 0.05 MeV and 0.2 MeV, respectively. As in AlxGa1−xN alloys, the alpha particles
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have a less broad energy distribution, but the maximum frequency is greater in carbon than
in all other materials. As mentioned above, alpha particles are the second most abundant
secondary products produced in neutron interactions with diamond. Alpha particles are
less abundant in all other materials. Finally, the proton distributions in diamond and
β-Ga2O3 are similar to those of AlxGa1−xN alloys, with maxima around 10 MeV and a
range of energies from tens of keV to 1 GeV. Note that unlike diamond, neutron interactions
with β-Ga2O3 produce more protons than alpha particles.

4. Discussion
The simulation results presented in Section 3 show that AlN is the material that

produces the fewest interactions with neutrons over the full neutron spectrum, while
GaN is the material that produces the most. For all the materials, more than half of the
interactions are the result of interactions with intermediate energy neutrons (part II of the
spectrum). In addition, elastic interactions between neutrons and materials account for
more than 85% of the total number of interactions. The material producing the fewest
secondary products is again AlN, except for neutrons in part I of the spectrum (due to the
particular 14N(n,p)14C reaction between low-energy neutrons and N, which leads to the
production of high-energy protons and 14C nuclei). These results give a first indication of
the neutron sensitivity of the materials studied here. However, these results also show that
a significant amount of the secondary products have very low energies, and thus, they do
not deposit enough charge in the materials to disturb the operation of the circuits, as will
be explained below. Therefore, the results presented so far need to be refined in order to
obtain a more accurate analysis of the response of materials in terms of interactions capable
of inducing SEEs in devices and circuits.

The secondary products resulting from the interaction between the neutrons and
the material are charged particles that interact with the electrons and nuclei of the target
material, causing them to lose energy and slow down. The energy of these charged particles
is thus transferred to the material [60] by the ionization mechanism: many excited energetic
electrons (delta rays) are produced, electrons that usually have enough energy to ionize
other atoms, and a cascade of secondary electrons is generated. These electrons thermalize
and create electron–hole pairs along the path of the charged particles [61]. In this way, a
large proportion of the energy that is deposited in the semiconductor is converted into
electron–hole pairs. The energy required to create an electron–hole pair, Eeh, is characteristic
of each material and depends on the band gap of the material. The values of Eeh for the
materials studied in this paper are given in Table 1. Following the formation of electron–hole
pairs after neutron–matter interactions, the free carriers evolve through several mechanisms.
They can recombine with other free carriers, or they can be transported by drift mechanisms
in regions exposed to an electric field (e.g., in reverse-biased junctions) or by ambipolar
diffusion in the neutral regions of the device [61]. The transported charges can be collected
in the junctions and induce a parasitic transient current, which can disturb the normal
operation of the device or circuit, thus producing an SEE. The induced disturbances depend
on the intensity of the current and the number of circuit nodes affected [47].

Concerning the neutron interactions with UWBG semiconductors studied in this work,
the energy distributions of the secondary products presented in Section 3.4 show that a
large proportion of these secondaries have very small energies, particularly for interactions
with neutrons in parts I and II of the spectrum of atmospheric neutrons. Low-energy
products are expected to generate very few electron–hole pairs in the material through the
ionization mechanism. Therefore, the amount of charge that these products will deposit in
the material will be very small and will not disturb the operation of devices and circuits.
For a more accurate analysis and to be able to finely compare the neutron sensitivity of
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these materials, it is necessary to consider only those secondary products that are capable
of depositing a minimum amount of charge in the material. We set this minimum charge at
0.7 fC, which is the critical charge of a standard 14 nm CMOS SRAM memory cell [62]. To
recall, the critical charge for a memory circuit is defined in [63] as the minimum amount
of collected charge that causes the logic state of a device node to change, resulting in an
SEE. The minimum charge of 0.7 fC corresponds to 4375 electrons, and the energy Emin,eh

required to create them is obtained for each material as follows:

Emin,eh = 4375 × Eeh (3)

where the energy required to create an electron–hole pair, Eeh, is given in Table 1. The
values of Emin,eh for the materials studied here are given in Table 6.

Table 6. Minimum energy of the secondary products required to create 4375 electrons, corresponding
to a minimum deposited charge of 0.7 fC.

Semiconductor GaN Al0.6Ga0.4N AlN Diamond β-Ga2O3

Minimum energy
Emin,eh to deposit

a charge of 0.7 fC (keV)
38.9 52.9 65.6 58.6 68.2

We have therefore eliminated secondary products with energies less than Emin,eh

from the simulation results for all materials. Figure 16 shows the remaining number of
interactions per part of the neutron spectrum, and Table 7 gives the detailed distribution
of these interactions according to the reaction mechanism (elastic or inelastic scattering
and nuclear reactions) and for each part of the neutron spectrum. Figure 17 shows the
total number of these interactions for each material and for the full neutron spectrum with
details of the mechanism involved. A comparison of the results in Figure 4 (taking into
account all interactions) with those in Figure 16 shows that the elimination of low-energy
secondary products results in the removal of a large number of interactions, particularly in
parts I and II of the spectrum. Thus, the interactions between low-energy neutrons (part I)
and diamond or β-Ga2O3 are completely excluded (i.e., the secondary products resulting
from these interactions do not have the energy necessary to deposit at least 0.7 fC). More
specifically, for part I of the spectrum and for all the materials, Table 7 shows that elastic
scattering is completely eliminated (there were no inelastic interactions). In this part of the
spectrum, only nuclear reactions between neutrons and GaN, Al0.6Ga0.4N, or AlN produce
secondary products capable of depositing at least 0.7 fC in the material.
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Table 7. Number of events of elastic and inelastic scattering and nuclear reactions capable of
depositing at least 0.7 fC of charge in the GaN, Al0.6Ga0.4N, diamond, and β-Ga2O3 bulk targets
subjected to part I, part II, and part III of the spectrum of atmospheric neutrons (Figure 2) for an
equivalent exposure time of 2.5 × 107 h.

Part of the
Neutron Spectrum Material Elastic Inelastic Nuclear

Part I

GaN 0 0 24,328
Al0.6Ga0.4N 0 0 24,498

AlN 0 0 26,081
Diamond 0 0 0
β-Ga2O3 0 0 0

Part II

GaN 0 0 2466
Al0.6Ga0.4N 14,045 0 1241

AlN 11,868 0 1254
Diamond 62,148 0 0
β-Ga2O3 6150 0 0

Part III

GaN 54,687 18,844 35,884
Al0.6Ga0.4N 58,693 13,797 30,101

AlN 62,901 11,777 26,884
Diamond 133,399 9124 28,641
β-Ga2O3 52,880 11,863 33,917
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shown in Figure 2 for an equivalent exposure time of 2.5 × 107 h.

Regarding the interactions with neutrons in part II of the spectrum (intermediate
energy), many of these interactions are eliminated, especially for GaN and β-Ga2O3. In this
part, inelastic interactions are eliminated for all the materials. In addition, for GaN, only
some of the nuclear reactions produce products of sufficient energy (the elastic reactions
are eliminated). For the other materials, only recoils from some of the elastic interactions
remain, as well as a small number of nuclear reactions for Al0.6Ga0.4N and AlN. In contrast
to parts I and II, the number of interactions with neutrons that give secondary products
capable of depositing at least 0.7 fC is much higher in part III. This result was expected,
since the high-energy neutrons involved in these interactions transfer a significant part of
their energy to the secondary products. These products will therefore have higher energies
than those resulting from interactions with low- and intermediate-energy neutrons.

The results in Figures 16 and 17 directly compare the atmospheric neutron response of
UWBG semiconductors from the point of view of the number of interactions that can trigger
SEEs in a device or circuit. Figure 17 shows that diamond is the most sensitive material to
neutrons in the whole spectrum, principally because of the very large number of elastic
interactions (especially in parts II and III, see Table 7), while β-Ga2O3 is the least sensitive
material, with more than half as many interactions as diamond. AlxGa1−xN alloys are less
sensitive than diamond, with about 40% fewer interactions and more than half the number
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of elastic interactions. Figure 16 shows that diamond and β-Ga2O3 are not sensitive to
low-energy neutrons, whereas AlxGa1−xN alloys are sensitive to thermal neutrons due
to the presence of N, which interacts with these neutrons in the 14N(n,p)14C reaction and
produces high-energy protons and 14C nuclei, as explained in Section 3. These results at
the material level have important implications for electronic devices and circuits in terms
of technological choices. Thus, for applications in which neutrons with thermal or low
energies are a significant concern, diamond- or β-Ga2O3-based electronic devices should
be preferred over AlxGa1−xN alloy-based devices. Furthermore, for such applications,
AlxGa1−xN alloy-based devices and circuits should be used with particular caution, for
example, by using absorbing materials such as B4C to eliminate thermal neutrons. For
medium- and high-energy neutrons, Figure 16 shows that diamond is much more sensitive
than the other materials. For high-energy neutrons, the number of interactions with
diamond is almost twice that of the other materials, while AlxGa1−xN alloys and β-Ga2O3

have equivalent sensitivity. Therefore, these results indicate that for applications involving
high-energy neutrons, electronic devices based on AlxGa1−xN alloys or β-Ga2O3 should be
preferred over those based on diamond.

5. Conclusions
In this study, we conducted an extensive simulation analysis of the interactions

between atmospheric neutrons and UWBG semiconductors, specifically focusing on
AlxGa1−xN alloys, diamond, and β-Ga2O3. Our results indicate significant variations
in single-particle neutron sensitivity among these materials, driven primarily by differences
in their atomic compositions and interaction mechanisms. The study reveals that a very
large proportion of the secondary products of these interactions are low energy, producing
very small amounts of electron–hole pairs that are unlikely to produce SEEs. Thus, a
detailed analysis has been carried out by considering only those interactions that are able
to deposit a charge of at least 0.7 fC (the critical charge of a standard 14 nm CMOS SRAM
memory cell) in the device. The results of this analysis show that diamond exhibits the
highest sensitivity across the entire neutron spectrum, primarily due to its high elastic
scattering cross-section, while β-Ga2O3 emerges as the least sensitive material, with more
than half as many interactions as diamond. The analysis further highlights that AlxGa1−xN
alloys exhibit a moderate neutron sensitivity, with a number of interactions that is approxi-
mately the same for all AlxGa1−xN alloys. Furthermore, the interactions with neutrons that
produce secondary products capable of depositing significant charge are more prevalent
for high-energy neutrons (part III of the atmospheric neutron spectrum). Our results also
suggest that for electronic applications where exposure to thermal or low-energy neutrons
is critical, diamond and β-Ga2O3 should be preferred over AlxGa1−xN alloys. However,
AlxGa1−xN and β-Ga2O3 appear to be more resilient choices than diamond when consider-
ing high-energy neutron environments. These simulation results offer valuable insights
for the design of radiation-tolerant electronic components and may guide the selection
of materials based on specific operational environments. Future work should focus on
experimental validation of these simulation results, including device-level assessments,
to fully understand the impact of single-particle neutron interactions on circuit perfor-
mance and reliability. In addition, exploration of neutron shielding techniques, such as
the integration of boron-based materials, could further enhance the radiation hardness of
AlxGa1−xN-based devices in critical applications.
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