Interplay of Transcriptomic Regulation, Microbiota, and Signaling Pathways in Lung and Gut Inflammation-Induced Tumorigenesis
<p>Venn diagram with the transcriptomic metafirm in common and unique to each type of inflammatory disease. Created with BioRender.com.</p> "> Figure 2
<p>Coding (lilium and grey) and non-coding (purple) transcriptional regulatory network (cncTRN) of key upregulated transcription factors (TFs) and lncRNA in pulmonary arterial hypertension (PAH). Created with Cytoscape.</p> "> Figure 3
<p>Coding (lilium and grey) and non-coding (purple) transcriptional regulatory network (cncTRN) of key upregulated transcription factors in CD. Created with Cytoscape.</p> "> Figure 4
<p>Coding (lilium and grey) and non-coding (purple) transcriptional regulatory network (cncTRN) of key upregulated transcription factors in ulcerative colitis. Created with Cytoscape.</p> "> Figure 5
<p>Microbiome interaction with membrane receptor of PAH-related cells activating signaling pathways involved in transcriptional regulation during lung inflammation. In red are the upregulated genes and TFs; in black are the key upregulated TFs. Created with BioRender.com.</p> "> Figure 6
<p>Microbiome interaction with membrane receptor of CD-related cells, activating signaling pathways involved in transcriptional regulation during gut inflammation. In red are the upregulated genes and TFs; in black are the key upregulated TFs. Created with BioRender.com.</p> "> Figure 7
<p>Microbiome interaction with membrane receptor of UC-related cells, activating signaling pathways involved in transcriptional regulation during gut inflammation. In red are the upregulated genes and TFs; in black are the key upregulated TFs. Created with BioRender.com.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Selection and Construction of Coding and Non-Coding Transcriptomic Gene Regulatory Networks of Lung and Gut Inflammatory Diseases
2.2. Transcriptomic Regulatory Network Analysis of Lung and Gut Inflammatory Diseases
3. Results
3.1. Pulmonary Arterial Hypertension (PAH)
3.2. Crohn’s Disease (CD)
3.3. Ulcerative Colitis (UC)
4. Discussion
4.1. Coding and Non-Coding Transcriptional Regulators of Gut and Lung Inflammatory Diseases
4.2. Host–Microbiota Crosstalk Through Lung and Gut Cells Receptors Present in Membrane Rafts and Complexes
4.3. Transcriptomic Association Between Gut and Lung Inflammatory and Tumorigenic Diseases
4.4. Transcriptomic Regulation and Microbiota Interactions Within Inflammation and Tumorigenesis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Yin, L.; Shen, S.; Hou, Y. Inflammation and Cancer: Paradoxical Roles in Tumorigenesis and Implications in Immunotherapies. Genes Dis. 2023, 10, 151–164. [Google Scholar] [CrossRef] [PubMed]
- Nejsum, L.N.; Andersen, Å.B. Infection and the Role in Cancer Development. APMIS 2020, 128, 71. [Google Scholar] [CrossRef]
- Doocey, C.M.; Finn, K.; Murphy, C.; Guinane, C.M. The Impact of the Human Microbiome in Tumorigenesis, Cancer Progression, and Biotherapeutic Development. BMC Microbiol. 2022, 22, 53. [Google Scholar] [CrossRef]
- Otálora-Otálora, B.A.; López-Rivera, J.J.; Aristizábal-Guzmán, C.; Isaza-Ruget, M.A.; Álvarez-Moreno, C.A. Host Transcriptional Regulatory Genes and Microbiome Networks Crosstalk through Immune Receptors Establishing Normal and Tumor Multiomics Metafirm of the Oral-Gut-Lung Axis. Int. J. Mol. Sci. 2023, 24, 16638. [Google Scholar] [CrossRef]
- Francescone, R.; Hou, V.; Grivennikov, S.I. Microbiome, Inflammation, and Cancer. Cancer J. 2014, 20, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Islam, M.R.; Shohag, S.; Ahasan, M.T.; Sarkar, N.; Khan, H.; Hasan, A.M.; Cavalu, S.; Rauf, A. Microbiome in Cancer: Role in Carcinogenesis and Impact in Therapeutic Strategies. Biomed. Pharmacother. 2022, 149, 112898. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Huang, L.; Hu, D.; Zeng, S.; Han, Y.; Shen, H. The Role of the Tumor Microbe Microenvironment in the Tumor Immune Microenvironment: Bystander, Activator, or Inhibitor? J. Exp. Clin. Cancer Res. 2021, 40, 327. [Google Scholar] [CrossRef] [PubMed]
- Jarmakiewicz-Czaja, S.; Zielińska, M.; Sokal, A.; Filip, R. Genetic and Epigenetic Etiology of Inflammatory Bowel Disease: An Update. Genes 2022, 13, 2388. [Google Scholar] [CrossRef]
- Adegbola, P.I.; Adetutu, A. Genetic and Epigenetic Modulations in Toxicity: The Two-Sided Roles of Heavy Metals and Polycyclic Aromatic Hydrocarbons from the Environment. Toxicol. Rep. 2024, 12, 502–519. [Google Scholar] [CrossRef]
- Otálora-Otálora, B.A.; López-Kleine, L.; Rojas, A. Lung Cancer Gene Regulatory Network of Transcription Factors Related to the Hallmarks of Cancer. Curr. Issues Mol. Biol. 2023, 45, 434–464. [Google Scholar] [CrossRef]
- Rai, P.R.; Cool, C.D.; King, J.A.C.; Stevens, T.; Burns, N.; Winn, R.A.; Kasper, M.; Voelkel, N.F. The Cancer Paradigm of Severe Pulmonary Arterial Hypertension. Am. J. Respir. Crit. Care Med. 2008, 178, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Zhu, T.; Tan, Z.; Chen, S.; Fang, Z. Role of Gut Microbiota in Pulmonary Arterial Hypertension. Front. Cell. Infect. Microbiol. 2022, 12, 812303. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Cheng, C.; Wei, Y.; Yang, F.; Li, G. The Role of Exosomes in Inflammatory Diseases and Tumor-Related Inflammation. Cells 2022, 11, 1005. [Google Scholar] [CrossRef] [PubMed]
- Pullamsetti, S.S.; Nayakanti, S.; Chelladurai, P.; Mamazhakypov, A.; Mansouri, S.; Savai, R.; Seeger, W. Cancer and Pulmonary Hypertension: Learning Lessons and Real-Life Interplay. Glob. Cardiol. Sci. Pract. 2020, 2020, e202010. [Google Scholar] [CrossRef] [PubMed]
- Roderburg, C.; Loosen, S.H.; Hippe, H.J.; Luedde, T.; Kostev, K.; Luedde, M. Pulmonary Hypertension Is Associated with an Increased Incidence of Cancer Diagnoses. Pulm. Circ. 2022, 12, e12000. [Google Scholar] [CrossRef]
- Otálora-Otálora, B.A.; Florez, M.; López-Kleine, L.; Canas Arboleda, A.; Grajales Urrego, D.M.; Rojas, A. Joint Transcriptomic Analysis of Lung Cancer and Other Lung Diseases. Front. Genet. 2019, 10, 1260. [Google Scholar] [CrossRef] [PubMed]
- Cool, C.D.; Kuebler, W.M.; Bogaard, H.J.; Spiekerkoetter, E.; Nicolls, M.R.; Voelkel, N.F. The Hallmarks of Severe Pulmonary Arterial Hypertension: The Cancer Hypothesis-Ten Years Later. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020, 318, L1115–L1130. [Google Scholar] [CrossRef]
- Tuder, R.M.; Davis, L.A.; Graham, B.B. Targeting Energetic Metabolism: A New Frontier in the Pathogenesis and Treatment of Pulmonary Hypertension. Am. J. Respir. Crit. Care Med. 2012, 185, 260–266. [Google Scholar] [CrossRef]
- Masri, F.A.; Xu, W.; Comhair, S.A.A.; Asosingh, K.; Koo, M.; Vasanji, A.; Drazba, J.; Anand-Apte, B.; Erzurum, S.C. Hyperproliferative Apoptosis-Resistant Endothelial Cells in Idiopathic Pulmonary Arterial Hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 2007, 293, L548–L554. [Google Scholar] [CrossRef]
- Boucherat, O.; Vitry, G.; Trinh, I.; Paulin, R.; Provencher, S.; Bonnet, S. The Cancer Theory of Pulmonary Arterial Hypertension. Pulm. Circ. 2017, 7, 285–299. [Google Scholar] [CrossRef]
- Pokharel, M.D.; Marciano, D.P.; Fu, P.; Franco, M.C.; Unwalla, H.; Tieu, K.; Fineman, J.R.; Wang, T.; Black, S.M. Metabolic Reprogramming, Oxidative Stress, and Pulmonary Hypertension. Redox Biol. 2023, 64, 102797. [Google Scholar] [CrossRef] [PubMed]
- Pullamsetti, S.S.; Mamazhakypov, A.; Weissmann, N.; Seeger, W.; Savai, R. Hypoxia-Inducible Factor Signaling in Pulmonary Hypertension. J. Clin. Investig. 2020, 130, 5638–5651. [Google Scholar] [CrossRef]
- Ramos, G.P.; Papadakis, K.A. Mechanisms of Disease: Inflammatory Bowel Diseases. Mayo Clin. Proc. 2019, 94, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Cui, G.; Yuan, A. A Systematic Review of Epidemiology and Risk Factors Associated with Chinese Inflammatory Bowel Disease. Front. Med. 2018, 5, 183. [Google Scholar] [CrossRef]
- Fanizza, J.; Bencardino, S.; Allocca, M.; Furfaro, F.; Zilli, A.; Parigi, T.L.; Fiorino, G.; Peyrin-Biroulet, L.; Danese, S.; D’Amico, F. Inflammatory Bowel Disease and Colorectal Cancer. Cancers 2024, 16, 2943. [Google Scholar] [CrossRef]
- Wan, Q.; Zhao, R.; Xia, L.; Wu, Y.; Zhou, Y.; Wang, Y.; Cui, Y.; Shen, X.; Wu, X.-T. Inflammatory Bowel Disease and Risk of Gastric, Small Bowel and Colorectal Cancer: A Meta-Analysis of 26 Observational Studies. J. Cancer Res. Clin. Oncol. 2021, 147, 1077–1087. [Google Scholar] [CrossRef] [PubMed]
- Majumder, S.; Shivaji, U.N.; Kasturi, R.; Sigamani, A.; Ghosh, S.; Iacucci, M. Inflammatory Bowel Disease-Related Colorectal Cancer: Past, Present and Future Perspectives. World J. Gastrointest. Oncol. 2022, 14, 547–567. [Google Scholar] [CrossRef] [PubMed]
- Burgos-Molina, A.M.; Téllez Santana, T.; Redondo, M.; Bravo Romero, M.J. The Crucial Role of Inflammation and the Immune System in Colorectal Cancer Carcinogenesis: A Comprehensive Perspective. Int. J. Mol. Sci. 2024, 25, 6188. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, H.; Liu, Y.; Long, Y. The Role of Gut and Airway Microbiota in Pulmonary Arterial Hypertension. Front. Microbiol. 2022, 13, 929752. [Google Scholar] [CrossRef]
- Fatakhova, K.; Rajapakse, R. From Random to Precise: Updated Colon Cancer Screening and Surveillance for Inflammatory Bowel Disease. Transl. Gastroenterol. Hepatol. 2024, 9, 27. [Google Scholar] [CrossRef]
- Ivleva, E.A.; Grivennikov, S.I. Microbiota-Driven Mechanisms at Different Stages of Cancer Development. Neoplasia 2022, 32, 100829. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, H.; Bording-Jorgensen, M.; Dijk, S.; Wine, E. The Complex Interplay between Chronic Inflammation, the Microbiome, and Cancer: Understanding Disease Progression and What We Can Do to Prevent It. Cancers 2018, 10, 83. [Google Scholar] [CrossRef] [PubMed]
- Potrykus, M.; Czaja-Stolc, S.; Stankiewicz, M.; Kaska, Ł.; Małgorzewicz, S. Intestinal Microbiota as a Contributor to Chronic Inflammation and Its Potential Modifications. Nutrients 2021, 13, 3839. [Google Scholar] [CrossRef] [PubMed]
- Peña-Romero, A.C.; Orenes-Piñero, E. Dual Effect of Immune Cells within Tumour Microenvironment: Pro-and Anti-Tumour Effects and Their Triggers. Cancers 2022, 14, 1681. [Google Scholar] [CrossRef] [PubMed]
- Stein, R.A.; Riber, L. Epigenetic Effects of Short-Chain Fatty Acids from the Large Intestine on Host Cells. MicroLife 2023, 4, uqad032. [Google Scholar] [CrossRef] [PubMed]
- Otálora-Otálora, B.A.; Payán-Gómez, C.; López-Rivera, J.J.; Pedroza-Aconcha, N.B.; Aristizábal-Guzmán, C.; Isaza-Ruget, M.A.; Álvarez-Moreno, C.A. Global Transcriptomic Network Analysis of the Crosstalk between Microbiota and Cancer-Related Cells in the Oral-Gut-Lung Axis. Front. Cell Infect. Microbiol. 2024, 14, 1425388. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bu, D.; Huo, P.; Wang, Z.; Rong, H.; Li, Y.; Liu, J.; Ye, M.; Wu, Y.; Jiang, Z.; et al. NcFANs v2.0: An Integrative Platform for Functional Annotation of Non-Coding RNAs. Nucleic Acids Res. 2021, 49, W459–W468. [Google Scholar] [CrossRef]
- Otasek, D.; Morris, J.H.; Bouças, J.; Pico, A.R.; Demchak, B. Cytoscape Automation: Empowering Workflow-Based Network Analysis. Genome Biol. 2019, 20, 185. [Google Scholar] [CrossRef]
- Huynh-Thu, V.A.; Irrthum, A.; Wehenkel, L.; Geurts, P. Inferring Regulatory Networks from Expression Data Using Tree-Based Methods. PLoS ONE 2010, 5, e12776. [Google Scholar] [CrossRef] [PubMed]
- Almeida-Silva, F.; Venancio, T.M. BioNERO: An All-in-One R/Bioconductor Package for Comprehensive and Easy Biological Network Reconstruction. Funct. Integr. Genom. 2022, 22, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A Web Server for Functional Enrichment Analysis and Functional Annotation of Gene Lists (2021 Update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Bardes, E.E.; Aronow, B.J.; Jegga, A.G. ToppGene Suite for Gene List Enrichment Analysis and Candidate Gene Prioritization. Nucleic Acids Res. 2009, 37, W305–W311. [Google Scholar] [CrossRef] [PubMed]
- Scorrano, G.; Laura, B.; Spiaggia, R.; Basile, A.; Palmucci, S.; Foti, P.V.; David, E.; Marinangeli, F.; Mascilini, I.; Corsello, A.; et al. Neuroimaging in PRUNE1 Syndrome: A Mini-Review of the Literature. Front. Neurol. 2023, 14, 1301147. [Google Scholar] [CrossRef] [PubMed]
- Bibbò, F.; Sorice, C.; Ferrucci, V.; Zollo, M. Functional Genomics of PRUNE1 in Neurodevelopmental Disorders (NDDs) Tied to Medulloblastoma (MB) and Other Tumors. Front. Oncol. 2021, 11, 758146. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Yang, Z.; Zhou, L.; Yang, M.; He, S. The Versatile Roles of Testrapanins in Cancer from Intracellular Signaling to Cell–Cell Communication: Cell Membrane Proteins without Ligands. Cell Biosci. 2023, 13, 59. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lin, M.; Zhao, J.; Zhu, S.; Xu, M.; Zhou, X. TSPAN7 Promotes the Migration and Proliferation of Lung Cancer Cells via Epithelial-to-Mesenchymal Transition. OncoTargets Ther. 2018, 11, 8815–8822. [Google Scholar] [CrossRef] [PubMed]
- Simonneau, G.; Montani, D.; Celermajer, D.S.; Denton, C.P.; Gatzoulis, M.A.; Krowka, M.; Williams, P.G.; Souza, R. Haemodynamic Definitions and Updated Clinical Classification of Pulmonary Hypertension. Eur. Respir. J. 2019, 53, 1–13. [Google Scholar] [CrossRef]
- Liu, S.F.; Nambiar Veetil, N.; Li, Q.; Kucherenko, M.M.; Knosalla, C.; Kuebler, W.M. Pulmonary Hypertension: Linking Inflammation and Pulmonary Arterial Stiffening. Front. Immunol. 2022, 13, 959209. [Google Scholar] [CrossRef]
- Zhao, Y.D.; Chu, L.; Lin, K.; Granton, E.; Yin, L.; Peng, J.; Hsin, M.; Wu, L.; Yu, A.; Waddell, T.; et al. A Biochemical Approach to Understand the Pathogenesis of Advanced Pulmonary Arterial Hypertension: Metabolomic Profiles of Arginine, Sphingosine-1-Phosphate, and Heme of Human Lung. PLoS ONE 2015, 10, e0134958. [Google Scholar] [CrossRef]
- Zhao, Y.; Peng, J.; Lu, C.; Hsin, M.; Mura, M.; Wu, L.; Chu, L.; Zamel, R.; Machuca, T.; Waddell, T.; et al. Metabolomic Heterogeneity of Pulmonary Arterial Hypertension. PLoS ONE 2014, 9, e88727. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.D.; Yun, H.Z.H.; Peng, J.; Yin, L.; Chu, L.; Wu, L.; Michalek, R.; Liu, M.; Keshavjee, S.; Waddell, T.; et al. De Novo Synthesize of Bile Acids in Pulmonary Arterial Hypertension Lung. Metabolomics 2014, 10, 1169–1175. [Google Scholar] [CrossRef]
- Tuder, R.M.; Gandjeva, A.; Williams, S.; Kumar, S.; Kheyfets, V.O.; Matthew Hatton-Jones, K.; Starr, J.R.; Yun, J.; Hong, J.; West, N.P.; et al. Digital Spatial Profiling Identifies Distinct Molecular Signatures of Vascular Lesions in Pulmonary Arterial Hypertension. Am. J. Respir. Crit. Care Med. 2024, 3, 329–342. [Google Scholar] [CrossRef]
- Stearman, R.S.; Bui, Q.M.; Speyer, G.; Handen, A.; Cornelius, A.R.; Graham, B.B.; Kim, S.; Mickler, E.A.; Tuder, R.M.; Chan, S.Y.; et al. Systems Analysis of the Human Pulmonary Arterial Hypertension Lung Transcriptome. Am. J. Respir. Cell Mol. Biol. 2019, 60, 637–649. [Google Scholar] [CrossRef]
- Romanoski, C.E.; Qi, X.; Sangam, S.; Vanderpool, R.R.; Stearman, R.S.; Conklin, A.; Gonzalez-Garay, M.; Rischard, F.; Ayon, R.J.; Wang, J.; et al. Transcriptomic Profiles in Pulmonary Arterial Hypertension Associate with Disease Severity and Identify Novel Candidate Genes. Pulm. Circ. 2020, 10, 2045894020968531. [Google Scholar] [CrossRef]
- Rajkumar, R.; Konishi, K.; Richards, T.J.; Ishizawar, D.C.; Wiechert, A.C.; Kaminski, N.; Ahmad, F. Genomewide RNA Expression Profiling in Lung Identifies Distinct Signatures in Idiopathic Pulmonary Arterial Hypertension and Secondary Pulmonary Hypertension. Am. J. Physiol. Heart Circ. Physiol. 2010, 298, 1235–1248. [Google Scholar] [CrossRef] [PubMed]
- Mura, M.; Cecchini, M.J.; Joseph, M.; Granton, J.T. Osteopontin Lung Gene Expression Is a Marker of Disease Severity in Pulmonary Arterial Hypertension. Respirology 2019, 24, 1104–1110. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.R.; Karki, R.; Sundaram, B.; Wang, Y.; Vogel, P.; Kanneganti, T.D. The Transcription Factor IRF9 Promotes Colorectal Cancer via Modulating the IL-6/STAT3 Signaling Axis. Cancers 2022, 14, 919. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, Y.; Zhang, N.; Xian, Y.; Tang, Y.; Ye, J.; Reza, F.; He, G.; Wen, X.; Jiang, X. The Multiple Roles of Interferon Regulatory Factor Family in Health and Disease. Signal Transduct. Target. Ther. 2024, 9, 282. [Google Scholar] [PubMed]
- Chen, Y.-J.; Li, Y.; Guo, X.; Huo, B.; Chen, Y.; He, Y.; Xiao, R.; Zhu, X.-H.; Jiang, D.-S.; Wei, X. Upregulation of IRF9 Contributes to Pulmonary Artery Smooth Muscle Cell Proliferation During Pulmonary Arterial Hypertension. Front. Pharmacol. 2021, 12, 773235. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Shao, T.; Zhu, Y.; Zong, G.; Zhang, J.; Tang, S.; Lin, Y.; Ma, H.; Jiang, Z.; Xu, Y.; et al. An MRTF-A–ZEB1–IRF9 Axis Contributes to Fibroblast–Myofibroblast Transition and Renal Fibrosis. Exp. Mol. Med. 2023, 55, 987–998. [Google Scholar] [CrossRef]
- You, Y.; Grasso, E.; Alvero, A.; Condon, J.; Dimova, T.; Hu, A.; Ding, J.; Alexandrova, M.; Manchorova, D.; Dimitrova, V.; et al. Twist1–IRF9 Interaction Is Necessary for IFN-Stimulated Gene Anti-Zika Viral Infection. J. Immunol. 2023, 210, 1899–1912. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, F.; Li, G.; Xu, J.; Zhang, J.; Gullen, E.; Yang, J.; Wang, J. From Immune Checkpoints to Therapies: Understanding Immune Checkpoint Regulation and the Influence of Natural Products and Traditional Medicine on Immune Checkpoint and Immunotherapy in Lung Cancer. Front. Immunol. 2024, 15, 1340307. [Google Scholar] [CrossRef] [PubMed]
- Su, T.; Zhang, N.; Wang, T.; Zeng, J.; Li, W.; Han, L.; Yang, M. Super Enhancer–Regulated LncRNA LINC01089 Induces Alternative Splicing of DIAPH3 to Drive Hepatocellular Carcinoma Metastasis. Cancer Res. 2023, 83, 4080–4094. [Google Scholar] [CrossRef] [PubMed]
- Yi, Q.; Zhu, G.; Ouyang, X.; Zhu, W.; Zhong, K.; Chen, Z.; Zhong, J. LINC01089 in Cancer: Multifunctional Roles and Therapeutic Implications. J. Transl. Med. 2024, 22, 858. [Google Scholar] [CrossRef]
- Elwell, C.; Engel, J. Emerging Role of Retromer in Modulating Pathogen Growth. Trends Microbiol. 2018, 26, 769–780. [Google Scholar] [CrossRef]
- Seyedian, S.S.; Nokhostin, F.; Malamir, M.D. A Review of the Diagnosis, Prevention, and Treatment Methods of Inflammatory Bowel Disease. J. Med. Life 2019, 12, 113–122. [Google Scholar] [CrossRef]
- Wu, F.; Dassopoulos, T.; Cope, L.; Maitra, A.; Brant, S.R.; Harris, M.L.; Bayless, T.M.; Parmigiani, G.; Chakravarti, S. Genome-Wide Gene Expression Differences in Crohn’s Disease and Ulcerative Colitis from Endoscopic Pinch Biopsies: Insights into Distinctive Pathogenesis. Inflamm. Bowel Dis. 2007, 13, 807–821. [Google Scholar] [CrossRef] [PubMed]
- Planell, N.; Masamunt, M.C.; Leal, R.F.; Rodríguez, L.; Esteller, M.; Lozano, J.J.; Ramírez, A.; de Ayrizono, M.L.S.; Coy, C.S.R.; Alfaro, I.; et al. Usefulness of Transcriptional Blood Biomarkers as a Non-Invasive Surrogate Marker of Mucosal Healing and Endoscopic Response in Ulcerative Colitis. J. Crohns Colitis 2017, 11, 1335–1346. [Google Scholar] [CrossRef]
- Pavlidis, P.; Tsakmaki, A.; Treveil, A.; Li, K.; Cozzetto, D.; Yang, F.; Niazi, U.; Hayee, B.H.; Saqi, M.; Friedman, J.; et al. Cytokine Responsive Networks in Human Colonic Epithelial Organoids Unveil a Molecular Classification of Inflammatory Bowel Disease. Cell Rep. 2022, 40, 111439. [Google Scholar] [CrossRef]
- Peters, L.A.; Perrigoue, J.; Mortha, A.; Iuga, A.; Song, W.M.; Neiman, E.M.; Llewellyn, S.R.; Di Narzo, A.; Kidd, B.A.; Telesco, S.E.; et al. A Functional Genomics Predictive Network Model Identifies Regulators of Inflammatory Bowel Disease. Nat. Genet. 2017, 49, 1437–1449. [Google Scholar] [CrossRef]
- Keir, M.E.; Fuh, F.; Ichikawa, R.; Acres, M.; Hackney, J.A.; Hulme, G.; Carey, C.D.; Palmer, J.; Jones, C.J.; Long, A.K.; et al. Regulation and Role of AE Integrin and Gut Homing Integrins in Migration and Retention of Intestinal Lymphocytes during Inflammatory Bowel Disease. J. Immunol. 2021, 207, 2245–2254. [Google Scholar] [CrossRef] [PubMed]
- Ngollo, M.; Perez, K.; Hammoudi, N.; Gorelik, Y.; Delord, M.; Auzolle, C.; Bottois, H.; Cazals-Hatem, D.; Bezault, M.; Nancey, S.; et al. Identification of Gene Expression Profiles Associated with an Increased Risk of Post-Operative Recurrence in Crohn’s Disease. J. Crohns Colitis 2022, 16, 1269–1280. [Google Scholar] [CrossRef]
- Palmer, N.P.; Silvester, J.A.; Lee, J.J.; Beam, A.L.; Fried, I.; Valtchinov, V.I.; Rahimov, F.; Kong, S.W.; Ghodoussipour, S.; Hood, H.C.; et al. Concordance between Gene Expression in Peripheral Whole Blood and Colonic Tissue in Children with Inflammatory Bowel Disease. PLoS ONE 2019, 14, e0222952. [Google Scholar] [CrossRef]
- Verstockt, S.; De Hertogh, G.; Van der Goten, J.; Verstockt, B.; Vancamelbeke, M.; Machiels, K.; Van Lommel, L.; Schuit, F.; Van Assche, G.; Rutgeerts, P.; et al. Gene and Mirna Regulatory Networks During Different Stages of Crohn’s Disease. J. Crohns Colitis 2019, 13, 916–930. [Google Scholar] [CrossRef] [PubMed]
- Vancamelbeke, M.; Vanuytsel, T.; Farré, R.; Verstockt, S.; Ferrante, M.; Van Assche, G.; Rutgeerts, P.; Schuit, F.; Vermeire, S.; Arijs, I.; et al. Genetic and Transcriptomic Bases of Intestinal Epithelial Barrier Dysfunction in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2017, 23, 1718–1729. [Google Scholar] [CrossRef] [PubMed]
- Vanhove, W.; Peeters, P.M.; Staelens, D.; Schraenen, A.; Van der Goten, J.; Cleynen, I.; De Schepper, S.; Van Lommel, L.; Reynaert, N.L.; Schuit, F.; et al. Strong Upregulation of AIM2 and IFI16 Inflammasomes in the Mucosa of Patients with Active Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2015, 21, 2673–2682. [Google Scholar] [CrossRef] [PubMed]
- Noble, C.L.; Abbas, A.R.; Lees, C.W.; Cornelius, J.; Toy, K.; Modrusan, Z.; Clark, H.F.; Arnott, I.D.; Penman, I.D.; Satsangi, J.; et al. Characterization of Intestinal Gene Expression Profiles in Crohn’s Disease by Genome-Wide Microarray Analysis. Inflamm. Bowel Dis. 2010, 16, 1717–1728. [Google Scholar] [CrossRef]
- Ye, S.; Lyu, Y.; Chen, L.; Wang, Y.; He, Y.; Li, Q.; Tian, L.; Liu, F.; Wang, X.; Ai, F. Construction of a Molecular Inflammatory Predictive Model with Histone Modification-Related Genes and Identification of CAMK2D as a Potential Response Signature to Infliximab in Ulcerative Colitis. Front. Immunol. 2023, 14, 1282136. [Google Scholar] [CrossRef] [PubMed]
- Bjerrum, J.T.; Nielsen, O.H.; Riis, L.B.; Pittet, V.; Mueller, C.; Rogler, G.; Olsen, J. Transcriptional Analysis of Left-Sided Colitis, Pancolitis, and Ulcerative Colitis-Associated Dysplasia. Inflamm. Bowel Dis. 2014, 20, 2340–2352. [Google Scholar] [CrossRef] [PubMed]
- Van der Goten, J.; Vanhove, W.; Lemaire, K.; Van Lommel, L.; Machiels, K.; Wollants, W.-J.; De Preter, V.; De Hertogh, G.; Ferrante, M.; Van Assche, G.; et al. Integrated MiRNA and MRNA Expression Profiling in Inflamed Colon of Patients with Ulcerative Colitis. PLoS ONE 2015, 9, e116117. [Google Scholar] [CrossRef] [PubMed]
- Sandborn, W.J.; Feagan, B.G.; Marano, C.; Zhang, H.; Strauss, R.; Johanns, J.; Adedokun, O.J.; Guzzo, C.; Colombel, J.F.; Reinisch, W.; et al. Subcutaneous Golimumab Induces Clinical Response and Remission in Patients with Moderate-to-Severe Ulcerative Colitis. Gastroenterology 2014, 146, 85–95. [Google Scholar] [CrossRef]
- Kugathasan, S.; Baldassano, R.N.; Bradfield, J.P.; Sleiman, P.M.A.; Imielinski, M.; Guthery, S.L.; Cucchiara, S.; Kim, C.E.; Frackelton, E.C.; Annaiah, K.; et al. Loci on 20q13 and 21q22 Are Associated with Pediatric-Onset Inflammatory Bowel Disease. Nat. Genet. 2008, 40, 1211–1215. [Google Scholar] [CrossRef]
- Noble, C.L.; Abbas, A.R.; Cornelius, J.; Lees, C.W.; Ho, G.-T.; Toy, K.; Modrusan, Z.; Pal, N.; Zhong, F.; Chalasani, S.; et al. Regional Variation in Gene Expression in the Healthy Colon Is Dysregulated in Ulcerative Colitis. Gut 2008, 57, 1398. [Google Scholar] [CrossRef]
- Montero-Meléndez, T.; Llor, X.; García-Planella, E.; Perretti, M.; Suárez, A. Identification of Novel Predictor Classifiers for Inflammatory Bowel Disease by Gene Expression Profiling. PLoS ONE 2013, 8, e76235. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, F.M.J.; Greenberg, D.; Nguyen, N.; Haeussler, M.; Ewing, A.D.; Katzman, S.; Paten, B.; Salama, S.R.; Haussler, D. An Evolutionary Arms Race between KRAB Zinc-Finger Genes ZNF91/93 and SVA/L1 Retrotransposons. Nature 2014, 516, 242–245. [Google Scholar] [CrossRef]
- Hong, K.; Yang, Q.; Yin, H.; Wei, N.; Wang, W.; Yu, B. Comprehensive Analysis of ZNF Family Genes in Prognosis, Immunity, and Treatment of Esophageal Cancer. BMC Cancer 2023, 23, 301. [Google Scholar] [CrossRef]
- Hamilton, A.T.; Huntley, S.; Tran-Gyamfi, M.; Baggott, D.M.; Gordon, L.; Stubbs, L. Evolutionary Expansion and Divergence in the ZNF91 Subfamily of Primate-Specific Zinc Finger Genes. Genome Res. 2006, 16, 584–594. [Google Scholar] [CrossRef]
- Diaz-Lagares, A.; Crujeiras, A.B.; Lopez-Serra, P.; Soler, M.; Setien, F.; Goyal, A.; Sandoval, J.; Hashimoto, Y.; Martinez-Cardús, A.; Gomez, A.; et al. Epigenetic Inactivation of the P53-Induced Long Noncoding RNA TP53 Target 1 in Human Cancer. Proc. Natl. Acad. Sci. USA 2016, 113, E7535–E7544. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Guo, Q.; Xin, M.; Lim, C.; Gamero, A.M.; Gerhard, G.S.; Yang, L. Lncrna Tp53tg1 Promotes the Growth and Migration of Hepatocellular Carcinoma Cells via Activation of Erk Signaling. Noncoding RNA 2021, 7, 52. [Google Scholar] [CrossRef]
- El-Sharkawy, A.; Malki, A. Vitamin D Signaling in Inflammation and Cancer: Molecular Mechanisms and Therapeutic Implications. Molecules 2020, 25, 3219. [Google Scholar] [CrossRef] [PubMed]
- Kellermann, L.; Hansen, S.L.; Maciag, G.; Granau, A.M.; Johansen, J.V.; Teves, J.M.; Bressan, R.B.; Pedersen, M.T.; Soendergaard, C.; Baattrup, A.M.; et al. Influence of Vitamin D Receptor Signalling and Vitamin D on Colonic Epithelial Cell Fate Decisions in Ulcerative Colitis. J. Crohns Colitis 2024, 18, 1672–1689. [Google Scholar] [CrossRef]
- Bakke, D.; Chatterjee, I.; Agrawal, A.; Dai, Y.; Sun, J. Regulation of Microbiota by Vitamin D Receptor: A Nuclear Weapon in Metabolic Diseases. Nucl. Recept. Res. 2018, 5, 101377. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, I.; Lu, R.; Zhang, Y.; Zhang, J.; Dai, Y.; Xia, Y.; Sun, J. Vitamin D Receptor Promotes Healthy Microbial Metabolites and Microbiome. Sci. Rep. 2020, 10, 7340. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, S.; Kitagishi, Y. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells. Cancers 2013, 5, 1261–1270. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Zhang, J.; Zhao, Z.; Yang, Y.; Meng, D.; Wang, J.; Guo, C.; Yuan, C. DLEU1: A Functional Long Noncoding RNA in Tumorigenesis. Curr. Pharm. Des. 2020, 26, 1742–1748. [Google Scholar] [CrossRef]
- Aboudehen, K. Regulation of MTOR Signaling by Long Non-Coding RNA. Biochim. Biophys. Acta Gene Regul. Mech. 2020, 1863, 194449. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Jiang, K.; Wang, B.M.; Liu, W.T.; Lin, R. MiR-31 Promotes Tumorigenesis in Ulcerative Colitis-Associated Neoplasia via Downregulation of SATB2. Mol. Med. Rep. 2020, 22, 4801–4809. [Google Scholar] [CrossRef]
- Wang, P.; Zhu, J.; Long, Q.; Wang, Y.; Xu, H.; Tao, H.; Wu, B.; Li, J.; Wu, Y.; Liu, S. LncRNA SATB2-AS1 Promotes Tumor Growth and Metastasis and Affects the Tumor Immune Microenvironment in Osteosarcoma by Regulating SATB2. J. Bone Oncol. 2023, 41, 100491. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Xu, X.; Pan, B.; Chen, X.; Lin, K.; Zeng, K.; Liu, X.; Xu, T.; Sun, L.; Qin, J.; et al. LncRNA SATB2-AS1 Inhibits Tumor Metastasis and Affects the Tumor Immune Cell Microenvironment in Colorectal Cancer by Regulating SATB2. Mol. Cancer 2019, 18, 135. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Jiang, D.M.; Hu, S.S.; Zhao, L.; Wang, L.; Yang, M.H.; Ai, M.L.; Jiang, H.J.; Han, Y.; Ding, Y.Q.; et al. SATB2-AS1 Suppresses Colorectal Carcinoma Aggressiveness by Inhibiting SATB2-Dependent Snail Transcription and Epithelial–Mesenchymal Transition. Cancer Res. 2019, 79, 3542–3556. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Na, M.J.; Yoon, S.; Shin, E.; Ha, J.W.; Jeon, S.; Nam, S.W. The Roles and Mechanisms of Coding and Noncoding RNA Variations in Cancer. Exp. Mol. Med. 2024, 56, 1909–1920. [Google Scholar] [CrossRef]
- Actis, G.C.; Pellicano, R.; Fagoonee, S.; Ribaldone, D.G. History of Inflammatory Bowel Diseases. J. Clin. Med. 2019, 8, 1970. [Google Scholar] [CrossRef] [PubMed]
- Ripa, I.; Andreu, S.; López-Guerrero, J.A.; Bello-Morales, R. Membrane Rafts: Portals for Viral Entry. Front. Microbiol. 2021, 12, 631274. [Google Scholar] [CrossRef]
- Rosenbaum, M.I.; Clemmensen, L.S.; Bredt, D.S.; Bettler, B.; Strømgaard, K. Targeting Receptor Complexes: A New Dimension in Drug Discovery. Nat. Rev. Drug Discov. 2020, 19, 884–901. [Google Scholar] [CrossRef] [PubMed]
- D’Aprile, C.; Prioni, S.; Mauri, L.; Prinetti, A.; Grassi, S. Lipid Rafts as Platforms for Sphingosine 1-Phosphate Metabolism and Signalling. Cell. Signal. 2021, 80, 109929. [Google Scholar] [CrossRef]
- Gluschke, H.; Siegert, E.; Minich, W.B.; Hackler, J.; Riemekasten, G.; Kuebler, W.M.; Simmons, S.; Schomburg, L. Autoimmunity to Sphingosine-1-Phosphate-Receptors in Systemic Sclerosis and Pulmonary Arterial Hypertension. Front. Immunol. 2022, 13, 935787. [Google Scholar] [CrossRef]
- Nagahashi, M.; Abe, M.; Sakimura, K.; Takabe, K.; Wakai, T. The Role of Sphingosine-1-Phosphate in Inflammation and Cancer Progression. Cancer Sci. 2018, 109, 3671–3678. [Google Scholar] [CrossRef]
- Liu, Y.; Zhi, Y.; Song, H.; Zong, M.; Yi, J.; Mao, G.; Chen, L.; Huang, G. S1PR1 Promotes Proliferation and Inhibits Apoptosis of Esophageal Squamous Cell Carcinoma through Activating STAT3 Pathway. J. Exp. Clin. Cancer Res. 2019, 38, 369. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Samuel, S.V.; Hoch, A.; Syphurs, C.; Diray-Arce, J. The Implication of Sphingolipids in Viral Infections. Int. J. Mol. Sci. 2023, 24, 17303. [Google Scholar] [CrossRef]
- Sun, G.; Wang, B.; Wu, X.; Cheng, J.; Ye, J.; Wang, C.; Zhu, H.; Liu, X. How Do Sphingosine-1-Phosphate Affect Immune Cells to Resolve Inflammation? Front. Immunol. 2024, 15, 1362459. [Google Scholar] [CrossRef]
- Azimi, M.; Le, T.T.; Brown, N.L. Presenilin Gene Function and Notch Signaling Feedback Regulation in the Developing Mouse Lens. Differentiation 2018, 102, 40–52. [Google Scholar] [CrossRef]
- Varga, T.; Czimmerer, Z.; Nagy, L. PPARs Are a Unique Set of Fatty Acid Regulated Transcription Factors Controlling Both Lipid Metabolism and Inflammation. Biochim. Biophys. Acta Mol. Basis Dis. 2011, 1812, 1007–1022. [Google Scholar] [CrossRef] [PubMed]
- Robinson, E.; Grieve, D.J. Significance of Peroxisome Proliferator-Activated Receptors in the Cardiovascular System in Health and Disease. Pharmacol. Ther. 2009, 122, 246–263. [Google Scholar] [CrossRef] [PubMed]
- Fanale, D.; Amodeo, V.; Caruso, S. The Interplay between Metabolism, PPAR Signaling Pathway, and Cancer. PPAR Res. 2017, 2017, 1830626. [Google Scholar] [CrossRef]
- Li, Y.; Pan, Y.; Zhao, X.; Wu, S.; Li, F.; Wang, Y.; Liu, B.; Zhang, Y.; Gao, X.; Wang, Y.; et al. Peroxisome Proliferator-Activated Receptors: A Key Link between Lipid Metabolism and Cancer Progression. Clin. Nutr. 2024, 43, 332–345. [Google Scholar] [CrossRef]
- Maginnis, M.S. β-Arrestins and G Protein-Coupled Receptor Kinases in Viral Entry: A Graphical Review. Cell. Signal. 2023, 102, 110558. [Google Scholar] [CrossRef]
- Mahadik, K.; Prakhar, P.; Rajmani, R.S.; Singh, A.; Balaji, K.N. C-Abl-TWIST1 Epigenetically Dysregulate Inflammatory Responses during Mycobacterial Infection by Co-Regulating Bone Morphogenesis Protein and MiR27a. Front. Immunol. 2018, 9, 85. [Google Scholar] [CrossRef]
- Sanchez-Duffhues, G.; Williams, E.; Goumans, M.J.; Heldin, C.H.; ten Dijke, P. Bone Morphogenetic Protein Receptors: Structure, Function and Targeting by Selective Small Molecule Kinase Inhibitors. Bone 2020, 138, 115472. [Google Scholar] [CrossRef]
- Velapasamy, S.; Dawson, C.W.; Young, L.S.; Paterson, I.C.; Yap, L.F. The Dynamic Roles of TGF-β Signalling in EBV-Associated Cancers. Cancers 2018, 10, 247. [Google Scholar] [CrossRef]
- Piscione, M.; Mazzone, M.; Di Marcantonio, M.C.; Muraro, R.; Mincione, G. Eradication of Helicobacter Pylori and Gastric Cancer: A Controversial Relationship. Front. Microbiol. 2021, 12, 630852. [Google Scholar] [CrossRef]
- Fernandes, Q.; Allouch, S.; Gupta, I.; Elmakaty, I.; Elzawawi, K.E.; Amarah, A.; Al-Thawadi, H.; Al-Farsi, H.; Vranic, S.; Al Moustafa, A.E. Human Papillomaviruses-Related Cancers: An Update on the Presence and Prevention Strategies in the Middle East and North African Regions. Pathogens 2022, 11, 1380. [Google Scholar] [CrossRef]
- Xie, Y.; Su, N.; Yang, J.; Tan, Q.; Huang, S.; Jin, M.; Ni, Z.; Zhang, B.; Zhang, D.; Luo, F.; et al. FGF/FGFR Signaling in Health and Disease. Signal Transduct. Target. Ther. 2020, 5, 181. [Google Scholar] [PubMed]
- He, P.; Mei, C.; Cheng, B.; Liu, W.; Wang, Y.; Wan, J. Chlamydia Pneumoniae Induces Macrophage-Derived Foam Cell Formation by up-Regulating Acyl-Coenzyme A: Cholesterol Acyltransferase 1. Microbes Infect. 2009, 11, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Korbecki, J.; Bobiński, R.; Dutka, M. Self-Regulation of the Inflammatory Response by Peroxisome Proliferator-Activated Receptors. Inflamm. Res. 2019, 68, 443–458. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Lim, J.W.; Kim, H. β-Carotene Inhibits Expression of Matrix Metalloproteinase-10 and Invasion in Helicobacter Pylori-Infected Gastric Epithelial Cells. Molecules 2021, 26, 1567. [Google Scholar] [CrossRef] [PubMed]
- Rajaram, M.V.S.; Brooks, M.N.; Morris, J.D.; Torrelles, J.B.; Azad, A.K.; Schlesinger, L.S. Mycobacterium Tuberculosis Activates Human Macrophage Peroxisome Proliferator-Activated Receptor γ Linking Mannose Receptor Recognition to Regulation of Immune Responses. J. Immunol. 2010, 185, 929–942. [Google Scholar] [CrossRef] [PubMed]
- Campbell, F.C.; Xu, H.; El-Tanani, M.; Crowe, P.; Bingham, V. The Yin and Yang of Vitamin D Receptor (VDR) Signaling in Neoplastic Progression: Operational Networks and Tissue-Specific Growth Control. Biochem. Pharmacol. 2010, 79, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Quiles, M.; Broekema, M.F.; Kalkhoven, E. PPARgamma in Metabolism, Immunity, and Cancer: Unified and Diverse Mechanisms of Action. Front. Endocrinol. 2021, 12, 624112. [Google Scholar] [CrossRef]
- Larcombe, L.; Orr, P.; Turner-Brannen, E.; Slivinski, C.R.; Nickerson, P.W.; Mookherjee, N. Effect of Vitamin D Supplementation on Mycobacterium Tuberculosis-Induced Innate Immune Responses in a Canadian Dené First Nations Cohort. PLoS ONE 2012, 7, e40692. [Google Scholar] [CrossRef] [PubMed]
- Bishop, L.E.; Ismailova, A.; Dimeloe, S.; Hewison, M.; White, J.H. Vitamin D and Immune Regulation: Antibacterial, Antiviral, Anti-Inflammatory. JBMR Plus 2021, 5, e10405. [Google Scholar] [CrossRef] [PubMed]
- Kotlyarov, S.; Kotlyarova, A. Clinical Significance of Lipid Transport Function of ABC Transporters in the Innate Immune System. Membranes 2022, 12, 1083. [Google Scholar] [CrossRef]
- Kaur, S.; Angrish, N.; Gupta, K.; Tyagi, A.K.; Khare, G. Inhibition of ABCG2 Efflux Pumps Renders the Mycobacterium Tuberculosis Hiding in Mesenchymal Stem Cells Responsive to Antibiotic Treatment. Infect. Genet. Evol. 2021, 87, 104662. [Google Scholar] [CrossRef] [PubMed]
- Szatmari, I.; Vámosi, G.; Brazda, P.; Balint, B.L.; Benko, S.; Széles, L.; Jeney, V.; Özvegy-Laczka, C.; Szántó, A.; Barta, E.; et al. Peroxisome Proliferator-Activated Receptor γ-Regulated ABCG2 Expression Confers Cytoprotection to Human Dendritic Cells. J. Biol. Chem. 2006, 281, 23812–23823. [Google Scholar] [CrossRef]
- Hartmann, C.; Schwietzer, Y.A.; Otani, T.; Furuse, M.; Ebnet, K. Physiological Functions of Junctional Adhesion Molecules (JAMs) in Tight Junctions. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183299. [Google Scholar] [CrossRef] [PubMed]
- Hoegg, M.B.; Browman, D.T.; Resek, M.E.; Robbins, S.M. Distinct Regions within the Erlins Are Required for Oligomerization and Association with High Molecular Weight Complexes. J. Biol. Chem. 2009, 284, 7766–7776. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhang, X.; Lee, J.S.; Wang, X.; Yang, Z.Q.; Zhang, K. Endoplasmic Reticulum Factor ERLIN2 Regulates Cytosolic Lipid Content in Cancer Cells. Biochem. J. 2012, 446, 415–425. [Google Scholar] [CrossRef]
- Whitten-Bauer, C.; Chung, J.; Gómez-Moreno, A.; Gomollón-Zueco, P.; Huber, M.D.; Gerace, L.; Garaigorta, U. The Host Factor Erlin-1 Is Required for Efficient Hepatitis C Virus Infection. Cells 2019, 8, 1555. [Google Scholar] [CrossRef] [PubMed]
- Batistič, O.; Kudla, J. Plant Calcineurin B-like Proteins and Their Interacting Protein Kinases. Biochim. Biophys. Acta Mol. Cell Res. 2009, 1793, 985–992. [Google Scholar] [CrossRef]
- Xu, S.; Zhou, F.; Tao, J.; Song, L.; Siew Chien, N.G.; Wang, X.; Chen, L.; Yi, F.; Ran, Z.; Zhou, R.; et al. Exome Sequencing Identifies DLG1 as a Novel Gene for Potential Susceptibility to Crohn’s Disease in a Chinese Family Study. PLoS ONE 2014, 9, e99807. [Google Scholar] [CrossRef] [PubMed]
- Lulić, L.; Jakovčević, A.; Manojlović, L.; Dediol, E.; Banks, L.; Tomaić, V. Human Dlg1 and Scrib Are Distinctly Regulated Independently of Hpv-16 during the Progression of Oropharyngeal Squamous Cell Carcinomas: A Preliminary Analysis. Cancers 2021, 13, 4461. [Google Scholar] [CrossRef]
- Golebiewski, L.; Liu, H.; Javier, R.T.; Rice, A.P. The Avian Influenza Virus NS1 ESEV PDZ Binding Motif Associates with Dlg1 and Scribble To Disrupt Cellular Tight Junctions. J. Virol. 2011, 85, 10639–10648. [Google Scholar] [CrossRef] [PubMed]
- Dizanzo, M.P.; Marziali, F.; Brunet Avalos, C.; Bugnon Valdano, M.; Leiva, S.; Cavatorta, A.L.; Gardiol, D. HPV E6 and E7 Oncoproteins Cooperatively Alter the Expression of Disc Large 1 Polarity Protein in Epithelial Cells. BMC Cancer 2020, 20, 293. [Google Scholar] [CrossRef]
- Walch, L. Emerging Role of the Scaffolding Protein Dlg1 in Vesicle Trafficking. Traffic 2013, 14, 964–973. [Google Scholar] [CrossRef] [PubMed]
- Olenick, M.A.; Dominguez, R.; Holzbaur, E.L.F. Dynein Activator Hook1 Is Required for Trafficking of BDNF-Signaling Endosomes in Neurons. J. Cell Biol. 2019, 218, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Bastidas, R.J.; Elwell, C.A.; Engel, J.N.; Valdivia, R.H. Chlamydial Intracellular Survival Strategies. Cold Spring Harb. Perspect. Med. 2013, 3, a010256. [Google Scholar] [CrossRef]
- Pokrovskaya, I.D.; Szwedo, J.W.; Goodwin, A.; Lupashina, T.V.; Nagarajan, U.M.; Lupashin, V.V. Chlamydia trachomatis Hijacks Intra-Golgi COG Complex-Dependent Vesicle Trafficking Pathway. Cell. Microbiol. 2012, 14, 656–668. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Bagyinszky, E.; An, S.S.A. Presenilin-1 (PSEN1) Mutations: Clinical Phenotypes beyond Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 8417. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, Y.; Zhang, Z.; Li, S.; Fan, H.; Gu, J.; Mao, R.; Xu, X. Repulsive Guidance Molecules b (RGMb): Molecular Mechanism, Function and Role in Diseases. Expert Rev. Mol. Med. 2024, 26, e24. [Google Scholar] [CrossRef]
- Shi, Y.; Zhong, L.; Li, Y.; Chen, Y.; Feng, S.; Wang, M.; Xia, Y.; Tang, S. Repulsive Guidance Molecule b Deficiency Induces Gut Microbiota Dysbiosis and Increases the Susceptibility to Intestinal Inflammation in Mice. Front. Microbiol. 2021, 12, 648915. [Google Scholar] [CrossRef]
- Routy, B.; Jackson, T.; Mählmann, L.; Baumgartner, C.K.; Blaser, M.; Byrd, A.; Corvaia, N.; Couts, K.; Davar, D.; Derosa, L.; et al. Melanoma and Microbiota: Current Understanding and Future Directions. Cancer Cell 2024, 42, 16–34. [Google Scholar] [CrossRef] [PubMed]
- Mawe, G.M.; Hoffman, J.M. Serotonin Signalling in the Gut-Functions, Dysfunctions and Therapeutic Targets. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 473–486. [Google Scholar] [CrossRef]
- Chen, Y.M.; Li, Y.; Wang, X.; Wang, Z.L.; Hou, J.J.; Su, S.; Zhong, W.L.; Xu, X.; Zhang, J.; Wang, B.M.; et al. Effect of Bacillus Subtilis, Enterococcus Faecium, and Enterococcus Faecalis Supernatants on Serotonin Transporter Expression in Cells and Tissues. World J. Gastroenterol. 2022, 28, 532–546. [Google Scholar] [CrossRef]
- Tang, B.L.; Tan, A.E.H.; Lim, L.K.; Lee, S.S.; Low, D.Y.H.; Hong, W. Syntaxin 12, a Member of the Syntaxin Family Localized to the Endosome. J. Biol. Chem. 1998, 273, 6944–6950. [Google Scholar] [CrossRef] [PubMed]
- Susa, K.J.; Bradshaw, G.A.; Eisert, R.J.; Schilling, C.M.; Kalocsay, M.; Blacklow, S.C.; Kruse, A.C. A Spatiotemporal Map of Co-Receptor Signaling Networks Underlying B Cell Activation. Cell Rep. 2024, 43, 114332. [Google Scholar] [CrossRef] [PubMed]
- Majdalawieh, A.; Zhang, L.; Fuki, I.V.; Rader, D.J.; Ro, H.-S. Adipocyte Enhancer-Binding Protein 1 Is a Potential Novel Atherogenic Factor Involved in Macrophage Cholesterol Homeostasis and Inflammation. Proc. Natl. Acad. Sci. USA 2006, 103, 2346–2351. [Google Scholar] [CrossRef] [PubMed]
- Majdalawieh, A.F.; Massri, M.; Ro, H.S. AEBP1 Is a Novel Oncogene: Mechanisms of Action and Signaling Pathways. J. Oncol. 2020, 2020, 8097872. [Google Scholar] [CrossRef] [PubMed]
- Yin, G.; Liu, Z.; Wang, Y.; Sun, L.; Wang, L.; Yao, B.; Liu, R.; Chen, T.; Niu, Y.; Liu, Q. Original Article ZNF503 Accelerates Aggressiveness of Hepatocellular Carcinoma Cells by Down-Regulation of GATA3 Expression and Regulated by MicroRNA-495. Am. J. Transl. Res. 2019, 11, 3426–3437. [Google Scholar] [PubMed]
- Du, L.; Liu, N.; Jin, J.; Cao, M.; Sun, Y.; Gao, X.; Ruan, B.; Yang, S.; Ge, D.; Ye, Y.; et al. ZNF3 Regulates Proliferation, Migration and Invasion through MMP1 and TWIST in Colorectal Cancer. Acta Biochim. Biophys. Sin. 2022, 54, 1889–1896. [Google Scholar] [CrossRef]
- Wang, M.; He, T.; Meng, D.; Lv, W.; Ye, J.; Cheng, L.; Hu, J. BZW2 Modulates Lung Adenocarcinoma Progression through Glycolysis-Mediated IDH3G Lactylation Modification. J. Proteome Res. 2023, 22, 3854–3865. [Google Scholar] [CrossRef]
- Garcia-Etxebarria, K.; Merino, O.; Gaite-Reguero, A.; Rodrigues, P.M.; Herrarte, A.; Etxart, A.; Ellinghaus, D.; Alonso-Galan, H.; Franke, A.; Marigorta, U.M.; et al. Local Genetic Variation of Inflammatory Bowel Disease in Basque Population and Its Effect in Risk Prediction. Sci. Rep. 2022, 12, 3386. [Google Scholar] [CrossRef] [PubMed]
- Axelrad, J.E.; Lichtiger, S.; Yajnik, V. Inflammatory Bowel Disease and Cancer: The Role of Inflammation, Immunosuppression, and Cancer Treatment. World J. Gastroenterol. 2016, 22, 4794–4801. [Google Scholar] [CrossRef] [PubMed]
Dataset | Number of Samples |
---|---|
GSE15197 | Normal (13) vs. Pulmonary arterial hypertension (18) |
GSE117261 | Normal (25) vs. Pulmonary arterial hypertension (58) |
GSE113439 | Normal (11) vs. Pulmonary arterial hypertension (15) |
GSE256539 | Normal (68) vs. Pulmonary arterial hypertension (152) |
GSE53408 | Normal (11) vs. Pulmonary arterial hypertension (12) |
GSE6731 | Normal (4) vs. Crohn’s disease (18) |
GSE94648 | Normal (22) vs. Crohn’s disease (50) |
GSE207022 | Normal (23) vs. Crohn’s disease (47) |
GSE66407 | Normal (99) vs. Crohn’s disease (103) |
GSE83687 | Normal (60) vs. Crohn’s disease (42) |
GSE179285 | Normal (31) vs. Crohn’s disease (47) |
GSE186582 | Normal (25) vs. Crohn’s disease (195) |
GSE126124 | Normal (21) vs. Crohn’s disease (37) |
GSE102134 | Normal (12) vs. Crohn’s disease (35) |
GSE75214 | Normal (22) vs. Crohn’s disease (58) |
GSE59071 | Normal (11) vs. Crohn’s disease (8) |
GSE20881 | Normal (73) vs. Crohn’s disease (99) |
GSE6731 | Normal (4) vs. Ulcerative colitis (9) |
GSE83687 | Normal (60) vs. Ulcerative colitis (32) |
GSE66407 | Normal (99) vs. Ulcerative colitis (161) |
GSE179285 | Normal (31) vs. Ulcerative colitis (23) |
GSE126124 | Normal (12) vs. Ulcerative colitis (7) |
GSE94648 | Normal (22) vs. Ulcerative colitis (25) |
GSE36807 | Normal (7) vs. Ulcerative colitis (15) |
GSE11223 | Normal (69) vs. Ulcerative colitis (63) |
GSE10616 | Normal (11) vs. Ulcerative colitis (10) |
GSE92415 | Normal (21) vs. Ulcerative colitis (87) |
GSE48959 | Normal (10) vs. Ulcerative colitis (9) |
GSE47908 | Normal (15) vs. Ulcerative colitis (20) |
Biological Process | Transcription Factors |
---|---|
Transcription | Positive: E2F4, FOXF1, FOXK1, GATA2, GLMP, HEY2, HIF3A, HOXA2, IRF9, MAF, RXRG, SOX7, TBX3, and ZNF335 Negative: AEBP1, BCL6, DACH1, FOXF1, FOXK1, GATA2, HEY2, HOXA2, KCNIP3, MAF, MIER2, SOX7, TBX3, and ZNF503 Complex: DACH1, E2F4, FOXF1, GATA2, HEY2, HIF3A, IRF9, MAF, RXRG, and TBX3 |
Metabolism | BCL6, DACH1, E2F4, FOXF1, FOXK1, GATA2, HEY2, HIF3A, IRF9, KCNIP3, MAF, RXRG, SOX7, ZNF333, ZNF335, ZNF362, and ZNF503 |
Angiogenesis | GATA2 and HIF3A. |
Cell proliferation | Positive regulation: BCL6, FOXF1, GATA2, HEY2, and ZNF335. Negative regulation: BCL6, DACH1, GATA2, SOX7, and ZNF503. |
Cell migration | DACH1, FOXF1, and GATA2. |
Cell differentiation | BCL6, E2F4, FOXF1, FOXK1, GATA2, HEY2, HOXA2, MAF, ZNF335, and ZNF503. |
Cell motility | DACH1, FOXF1, and GATA2. |
Cell activation | BCL6, FOXF1, GATA2, and ZNF335. |
Immune response | BCL6, FOXF1, GATA2, and ZNF335. |
Apoptosis | BCL6, GATA2, HEY2, HIF3A, KCNIP3, SOX7, and ZNF346. |
Epigenetics reprogramming | Phosphoprotein: BCL6, DACH1, E2F4, FOXK1, GATA2, IRF9, KCNIP3, MIER2, PHF1, TBX3, ZNF335, ZNF362, and ZNF503 Histone modifications: BCL6, GATA2, MIER2, and ZNF335. Histone deacetylase binding: HEY2 and MIER2. Epigenetic regulation of gene expression: ZNF335. Protein-DNA complexes: E2F4, FOXF1, FOXK1, HEY2, HIF3A, HOXA2, IRF9, KCNIP3, MAF, RXRG, SOX7, and TBX3. |
Biological Process | Transcription Factors |
---|---|
Transcription | Positive: FOXJ3, GPBP1L1, HINFP, KLF5, MLX, NFYC, OVOL1, OVOL2, PPARG, PPARGC1A, SMAD4, TFDP2, THRB, UBP1, VDR, ZNF91, ZNF395, and ZNF600. Negative: ARHGAP35, FOXN3, HINFP, ID3, KLF5, MIER3, MLX, OVOL1, OVOL2, PPARG, SMAD4, TFDP2, THRB, UBP1, VDR, ZFP3, ZNF3, ZNF91, and ZNF124. Complex: KLF5, MLX, NFYC, PPARG, SMAD4, TFDP2, THRB, and VDR. |
Metabolism | ARHGAP35, FOXJ3, HINFP, ID3, ISX, KLF5, MLX, NFYC, OVOL1, OVOL2, PPARG, PPARGC1A, SMAD4, UBP1, VDR, ZFP3, ZNF3, ZNF395, ZNF600, and ZNF704 |
Cell differentiation | ARHGAP35, HINFP, ID3, KLF5, OVOL2, PPARG, PPARGC1A, ROGDI, SMAD4, VDR, and ZNF3. |
Cell proliferation | KLF5, OVOL1, OVOL2, PPARG, PPARGC1A, ROGDI, SMAD4, and VDR. |
Angiogenesis | KLF5, OVOL2, PPARG, and UBP1. |
Apoptosis | ID3, PPARG, PPARGC1A, SMAD4, and VDR. |
Cell development | ARHGAP35, KLF5, OVOL2, PPARG, and SMAD4. |
Cell migration | ARHGAP35, OVOL2, PPARG, and PPARGC1A. |
Response to growth factor | OVOL2, PPARGC1A, and SMAD4. |
Response to cytokine | KLF5, PPARG, PPARGC1A, and SMAD4. |
Response to hormone | PPARG, PPARGC1A, and VDR. |
Epigenetics reprogramming | Phosphoprotein: ARHGAP35, FOXJ3, FOXN3, GPBP1L1, MIER3, MLX, OVOL2, PPARG, PPARGC1A, SMAD4, TFDP2, TSHZ1, UBP1, ZNF3, ZNF395, and ZNF704. Acetylation: PPARGC1A, ROGDI, SMAD4, and TFDP2. Protein phosphorylation: PPARGC1A, and SMAD4. Protein-DNA complexes: FOXJ3, FOXN3, ISX, KLF5, MLX, NFYC, PPARG, PPARGC1A, SMAD4, TFDP2, THRB, TSHZ1, UBP1, and VDR. |
Biological Process | Transcription Factors |
---|---|
Transcription | Positive: ELF4, FOXJ3, HINFP, GPBP1L1, HNF4A, HNF4G, HOXA2, HOXA5, KLF5, MLX, MLXIP, NFYC, NR1I2, NR1H4, NR3C2, NR5A2, OVOL2, PPARA, PPARGC1A, PPARGC1B, SATB2, THRA, VDR, ZNF91, ZNF112, ZNF219, and ZNF395. Negative: ARHGAP35, CBFA2T2, HINFP, HNF4A, HOXA2, KLF5, MLX, MNX1, MXI1, NR1H4, NR1I2, OVOL2, PPARA, PPARGC1B, SATB2, THRA, VDR, ZFP3, ZNF91, ZNF124, ZNF219, ZNF253, ZNF439, and ZNF350. Complex: HNF4G, KLF5, MLX, MLXIP, MXI1, NFYC, NR1I2, NR5A2, SATB2, THRA, VDR, and ZNF350. Coregulator binding: HNF4A, NR1H4, NR3C2, NR5A2, and PPARA. |
Metabolism | ARHGAP35, CBFA2T2, ELF4, FOXJ3, HINFP, HNF4A, HNF4G, KLF5, MLX, MLXIP, MXI1, NFYC, NR1I2, NR3C2, NR5A2, OVOL2, PPARA, PPARGC1A, PPARGC1B, THRA, VDR, ZFP3, ZKSCAN1, ZNF124, ZNF350, ZNF395, ZNF44, ZNF813, and ZNF823. |
Circadian rhythm | HNF4A, PPARA, and PPARGC1A. |
Cell differentiation | ARHGAP35, CBFA2T2, HINFP, HNF4A, HOXA2, KLF5, NR5A2, OVOL2, PPARA, PPARGC1A, PPARGC1B, THRA, and VDR. |
Cell proliferation | HNF4A, KLF5, MXI1, NR5A2, OVOL2, PPARGC1A, and VDR. |
Cell development | ARHGAP35, CBFA2T2, HNF4A, HOXA2, KLF5, OVOL2, and PPARA. |
Response to lipid | HNF4A, HNF4G, HOXA2, NR1I2, NR3C2, NR5A2, PPARA, PPARGC1A, PPARGC1B, THRA, and VDR. |
Response to hormone | HNF4A, HNF4G, NR1I2, NR3C2, NR5A2, PPARA, PPARGC1A, PPARGC1B, THRA, and VDR. |
Epigenetics reprogramming | Phosphoprotein: ARHGAP35, BZW2, CBFA2T2, ELF4, FOXJ3, GPBP1L1, HNF4A, HNF4G, LRRFIP2, MLX, MLXIP, MNX1, NR1H4, NR3C2, OVOL2, PPARGC1A, PPARGC1B, SATB2, ZKSCAN1, ZNF219, and ZNF395. Acetylation: BZW2, HNF4A, MLXIP, MNX1, NR1H4, and PPARGC1A. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otálora-Otálora, B.A.; Payán-Gómez, C.; López-Rivera, J.J.; Pedroza-Aconcha, N.B.; Arboleda-Mojica, S.L.; Aristizábal-Guzmán, C.; Isaza-Ruget, M.A.; Álvarez-Moreno, C.A. Interplay of Transcriptomic Regulation, Microbiota, and Signaling Pathways in Lung and Gut Inflammation-Induced Tumorigenesis. Cells 2025, 14, 1. https://doi.org/10.3390/cells14010001
Otálora-Otálora BA, Payán-Gómez C, López-Rivera JJ, Pedroza-Aconcha NB, Arboleda-Mojica SL, Aristizábal-Guzmán C, Isaza-Ruget MA, Álvarez-Moreno CA. Interplay of Transcriptomic Regulation, Microbiota, and Signaling Pathways in Lung and Gut Inflammation-Induced Tumorigenesis. Cells. 2025; 14(1):1. https://doi.org/10.3390/cells14010001
Chicago/Turabian StyleOtálora-Otálora, Beatriz Andrea, César Payán-Gómez, Juan Javier López-Rivera, Natalia Belén Pedroza-Aconcha, Sally Lorena Arboleda-Mojica, Claudia Aristizábal-Guzmán, Mario Arturo Isaza-Ruget, and Carlos Arturo Álvarez-Moreno. 2025. "Interplay of Transcriptomic Regulation, Microbiota, and Signaling Pathways in Lung and Gut Inflammation-Induced Tumorigenesis" Cells 14, no. 1: 1. https://doi.org/10.3390/cells14010001
APA StyleOtálora-Otálora, B. A., Payán-Gómez, C., López-Rivera, J. J., Pedroza-Aconcha, N. B., Arboleda-Mojica, S. L., Aristizábal-Guzmán, C., Isaza-Ruget, M. A., & Álvarez-Moreno, C. A. (2025). Interplay of Transcriptomic Regulation, Microbiota, and Signaling Pathways in Lung and Gut Inflammation-Induced Tumorigenesis. Cells, 14(1), 1. https://doi.org/10.3390/cells14010001