Caveolin-Mediated Endocytosis: Bacterial Pathogen Exploitation and Host–Pathogen Interaction
<p>Schematic depicting the mechanism of <span class="html-italic">L. monocytogenes</span> LAP and caveolin-mediated translocation across the intestinal epithelial barrier and subsequent InlA-mediated internalization across non-phagocytic cells. LAP on <span class="html-italic">L. monocytogenes</span> binds to its host cell surface receptor heat shock protein 60 (Hsp60), inducing endocytosis of tight junction proteins, claudin-1, occludin, and the adherens junction protein E-cadherin via caveolin-1 and MLCK-mediated endocytosis. This disrupts cell junctions, allowing <span class="html-italic">L. monocytogenes</span> to pass through the paracellular spaces. InlA subsequently binds to its receptor E-cadherin at the adherens junctions to mediate transcytosis across the epithelial barrier. In non-phagocytic cells, the bacterial surface protein InlA and InlB interact with E-cadherin and c-met, leading to the cytoskeletal rearrangement via a zipper mechanism that triggers <span class="html-italic">L. monocytogenes</span> internalization through PI3-K activation and caveolin-mediated endocytosis. Figure created using Biorender and adapted from [<a href="#B43-cells-14-00002" class="html-bibr">43</a>].</p> "> Figure 2
<p>Schematic representation of the cell-to-cell spread mechanism of <span class="html-italic">L. monocytogenes</span> in phagocytic and non-phagocytic cells. In phagocytic cells (<b>left</b>), internalized actin protrusions containing <span class="html-italic">L. monocytogenes</span> secrete LLO, which disrupts phosphatidyl serine on the plasma membrane. Both actin protrusions and phosphatidyl serine-positive <span class="html-italic">L. monocytogenes</span> bind to the TIM4 receptor on the host cell surface, which causes internalization of <span class="html-italic">L. monocytogenes</span> via caveolin-mediated endocytosis. In non-phagocytic cells (<b>right</b>), when actin filament-rich protrusions containing the bacteria extend from one cell, they bind to ubiquitinated E-cadherin in adjacent cells. This binding triggers caveolae to form a flattened invagination that wraps around these bacterial protrusions, effectively engulfing them with the help of some core proteins of caveolae, such as Cav-1, Cav-2, a subset of the caveolin-associated proteins (cavin-2 and EHD2), and clathrin-interacting Epsin that assists in bending the membrane to create these invaginations. Figure created using Biorender.</p> "> Figure 3
<p>Schematics depicting the internalization mechanism of <span class="html-italic">P. gingivalis</span> and <span class="html-italic">Leptospira</span> via caveolin-mediated endocytosis. (<b>A</b>) The interaction of the virulent factor RgpA of <span class="html-italic">P. gingivalis</span> with Cav-1 in the host cell facilitates the internalization of <span class="html-italic">P. gingivalis</span> via caveolae. <span class="html-italic">P. gingivalis</span> inhibits the integrity of Mfsd2a, leading to enhanced transcytosis across the blood–brain barrier and increased Cav-1 expression, which induces albumin uptake to the cell (adapted from [<a href="#B89-cells-14-00002" class="html-bibr">89</a>]). (<b>B</b>) Leptospiral species interacts with integrin-β-1 on host cells; it triggers caveolin to form an invagination; and through the caveolae/integrin-b1-PI3K/FAK-microfilament endocytosis pathway, it enters the host cell. To avoid fusion with lysosomes, it forms leptospiral vesicles inside the host cell, and these vesicles recruit Rab5/Rab11 and Sec/Exo-SNARE proteins in endocytic recycling and vesicular transport systems for intracellular migration and finally release from the cells through a SNARE complex-mediated FAK/microfilament/microtubule endocytosis pathway. Figure created using Biorender.</p> ">
Abstract
:1. Introduction
2. Gram-Positive Pathogens That Hijack the Caveolin-Mediated Endocytosis for Cellular Entry, Survival, and Immune Evasion
2.1. Listeria monocytogenes
2.2. Mycobacterium tuberculosis
2.3. Staphylococcus aureus
2.4. Streptococcus Species
3. Gram-Negative Bacterial Pathogens Manipulate Caveolin-Mediated Endocytosis to Infiltrate Host Cells, Secure a Niche for Survival, and Evade the Immune System
3.1. Brucella spp.
3.2. Campylobacter jejuni
3.3. Chlamydia trachomatis
3.4. Edwardsiella tarda
3.5. Ehrlichia caffeensis and Anaplasma phagocytophilum
3.6. Escherichia coli
3.7. Francisella tularensis
3.8. Helicobacter pylori
3.9. Klebsiella pneumonia
3.10. Leptospira
3.11. Neisseria gonorrhea
3.12. Porphyromonas gingivalis
3.13. Pseudomonas aeruginosa
3.14. Rickettsia spp.
3.15. Salmonella enterica serovar Typhimurium
3.16. Shigella flexneri
4. Mycoplasma spp.; The Cell-Wall-Less Bacterial Pathogens That Capitalize on Caveolin-Mediated Endocytosis for Cellular Entry
Mycoplasma spp.
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yamada, E. The fine structure of the gall bladder epithelium of the mouse. J. Biophys. Biochem. Cytol. 1955, 1, 445–458. [Google Scholar] [CrossRef] [PubMed]
- Fra, A.M.; Williamson, E.; Simons, K.; Parton, R.G. De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc. Natl. Acad. Sci. USA 1995, 92, 8655–8659. [Google Scholar] [CrossRef] [PubMed]
- Drab, M.; Verkade, P.; Elger, M.; Kasper, M.; Lohn, M.; Lauterbach, B.; Menne, J.; Lindschau, C.; Mende, F.; Luft, F.C. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 2001, 293, 2449–2452. [Google Scholar] [CrossRef]
- Razani, B.; Engelman, J.A.; Wang, X.B.; Schubert, W.; Zhang, X.L.; Marks, C.B.; Macaluso, F.; Russell, R.G.; Li, M.; Pestell, R.G. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J. Biol. Chem. 2001, 276, 38121–38138. [Google Scholar] [CrossRef] [PubMed]
- Glenney, J.R. Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus. J. Biol. Chem. 1989, 264, 20163–20166. [Google Scholar] [CrossRef]
- Glenney, J.R., Jr.; Zokas, L. Novel tyrosine kinase substrates from Rous sarcoma virus-transformed cells are present in the membrane skeleton. J. Cell Biol. 1989, 108, 2401–2408. [Google Scholar] [CrossRef]
- Bastiani, M.; Parton, R.G. Caveolae at a glance. J. Cell Sci. 2010, 123, 3831–3836. [Google Scholar] [CrossRef] [PubMed]
- Parton, R.G. Caveolae: Structure, function, and relationship to disease. Annu. Rev. Cell Dev. Biol. 2018, 34, 111–136. [Google Scholar] [CrossRef] [PubMed]
- Scherer, P.E.; Okamoto, T.; Chun, M.; Nishimoto, I.; Lodish, H.F.; Lisanti, M.P. Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc. Natl. Acad. Sci. USA 1996, 93, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Song, K.S.; Scherer, P.E.; Tang, Z.; Okamoto, T.; Li, S.; Chafel, M.; Chu, C.; Kohtz, D.S.; Lisanti, M.P. Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells: Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J. Biol. Chem. 1996, 271, 15160–15165. [Google Scholar] [CrossRef] [PubMed]
- Porta, J.C.; Han, B.; Gulsevin, A.; Chung, J.M.; Peskova, Y.; Connolly, S.; Mchaourab, H.S.; Meiler, J.; Karakas, E.; Kenworthy, A.K. Molecular architecture of the human caveolin-1 complex. Sci. Adv. 2022, 8, eabn7232. [Google Scholar] [CrossRef]
- Morén, B.; Shah, C.; Howes, M.T.; Schieber, N.L.; McMahon, H.T.; Parton, R.G.; Daumke, O.; Lundmark, R. EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization. Mol. Biol. Cell 2012, 23, 1316–1329. [Google Scholar] [CrossRef] [PubMed]
- Ariotti, N.; Hall, T.E.; Rae, J.; Ferguson, C.; McMahon, K.-A.; Martel, N.; Webb, R.E.; Webb, R.I.; Teasdale, R.D.; Parton, R.G. Modular detection of GFP-labeled proteins for rapid screening by electron microscopy in cells and organisms. Dev. Cell 2015, 35, 513–525. [Google Scholar] [CrossRef]
- Yeow, I.; Howard, G.; Chadwick, J.; Mendoza-Topaz, C.; Hansen, C.G.; Nichols, B.J.; Shvets, E. EHD proteins cooperate to generate caveolar clusters and to maintain caveolae during repeated mechanical stress. Curr. Biol. 2017, 27, 2951–2962.e2955. [Google Scholar] [CrossRef]
- Kovtun, O.; Tillu, V.A.; Ariotti, N.; Parton, R.G.; Collins, B.M. Cavin family proteins and the assembly of caveolae. J. Cell Sci. 2015, 128, 1269–1278. [Google Scholar] [CrossRef]
- Kovtun, O.; Tillu, V.A.; Jung, W.; Leneva, N.; Ariotti, N.; Chaudhary, N.; Mandyam, R.A.; Ferguson, C.; Morgan, G.P.; Johnston, W.A. Structural insights into the organization of the cavin membrane coat complex. Dev. Cell 2014, 31, 405–419. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.M.; Bastiani, M.; Luetterforst, R.; Kirkham, M.; Kirkham, A.; Nixon, S.J.; Walser, P.; Abankwa, D.; Oorschot, V.M.; Martin, S. PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 2008, 132, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Monier, S.; Parton, R.G.; Vogel, F.; Behlke, J.; Henske, A.; Kurzchalia, T.V. VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol. Biol. Cell 1995, 6, 911–927. [Google Scholar] [CrossRef] [PubMed]
- Bastiani, M.; Liu, L.; Hill, M.M.; Jedrychowski, M.P.; Nixon, S.J.; Lo, H.P.; Abankwa, D.; Luetterforst, R.; Fernandez-Rojo, M.; Breen, M.R. MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes. J. Cell Biol. 2009, 185, 1259–1273. [Google Scholar] [CrossRef]
- Lajoie, P.; Goetz, J.G.; Dennis, J.W.; Nabi, I.R. Lattices, rafts, and scaffolds: Domain regulation of receptor signaling at the plasma membrane. J. Cell Biol. 2009, 185, 381–385. [Google Scholar] [CrossRef]
- Hayer, A.; Stoeber, M.; Bissig, C.; Helenius, A. Biogenesis of caveolae: Stepwise assembly of large caveolin and cavin complexes. Traffic 2010, 11, 361–382. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.E.-J.; Guttman, J.A. Hijacking the endocytic machinery by microbial pathogens. Protoplasma 2010, 244, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.-J.; Deep Singh, R.; Marks, D.L.; Pagano, R.E. Membrane microdomains, caveolae, and caveolar endocytosis of sphingolipids. Mol. Membr. Biol. 2006, 23, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.-S.; Abraham, S.N. Caveolae as portals of entry for microbes. Microbes Infect. 2001, 3, 755–761. [Google Scholar] [CrossRef] [PubMed]
- Zaas, D.W.; Duncan, M.J.; Li, G.; Wright, J.R.; Abraham, S.N. Pseudomonas invasion of type I pneumocytes is dependent on the expression and phosphorylation of caveolin-2. J. Biol. Chem. 2005, 280, 4864–4872. [Google Scholar] [CrossRef]
- Feng, H.; Guo, W.; Han, J.; Li, X.-A. Role of caveolin-1 and caveolae signaling in endotoxemia and sepsis. Life Sci. 2013, 93, 1–6. [Google Scholar] [CrossRef]
- Duncan, M.J.; Shin, J.S.; Abraham, S.N. Microbial entry through caveolae: Variations on a theme. Cell. Microbiol. 2002, 4, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.S.; Abraham, S. Co-option of endocytic functions of cellular caveolae by pathogens. Immunology 2001, 102, 2–7. [Google Scholar] [CrossRef]
- Zaas, D.W.; Swan, Z.; Brown, B.J.; Wright, J.R.; Abraham, S.N. The expanding roles of caveolin proteins in microbial pathogenesis. Commun. Integr. Biol. 2009, 2, 535–537. [Google Scholar] [CrossRef]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.-A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States—Major pathogens. Emerg. Infect. Dis. 2011, 17, 7. [Google Scholar] [CrossRef]
- Radoshevich, L.; Cossart, P. Listeria monocytogenes: Towards a complete picture of its physiology and pathogenesis. Nat. Rev. Microbiol. 2018, 16, 32–46. [Google Scholar] [CrossRef] [PubMed]
- Eallonardo, S.J.; Freitag, N.E. Crossing the Barrier: A Comparative Study of Listeria monocytogenes and Treponema pallidum in Placental Invasion. Cells 2023, 13, 88. [Google Scholar] [CrossRef] [PubMed]
- Drolia, R.; Bhunia, A.K. Crossing the intestinal barrier via Listeria adhesion protein and internalin A. Trends Microbiol. 2019, 27, 408–425. [Google Scholar] [CrossRef] [PubMed]
- Lecuit, M.; Vandormael-Pournin, S.; Lefort, J.; Huerre, M.; Gounon, P.; Dupuy, C.; Babinet, C.; Cossart, P. A transgenic model for listeriosis: Role of internalin in crossing the intestinal barrier. Science 2001, 292, 1722–1725. [Google Scholar] [CrossRef]
- Drolia, R.; Tenguria, S.; Durkes, A.C.; Turner, J.R.; Bhunia, A.K. Listeria adhesion protein induces intestinal epithelial barrier dysfunction for bacterial translocation. Cell Host Microbe 2018, 23, 470–484.e477. [Google Scholar] [CrossRef]
- Chiba, S.; Nagai, T.; Hayashi, T.; Baba, Y.; Nagai, S.; Koyasu, S. Listerial invasion protein internalin B promotes entry into ileal Peyer’s patches in vivo. Microbiol. Immunol. 2011, 55, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Portnoy, D.A.; Jacks, P.S.; Hinrichs, D. Role of hemolysin for the intracellular growth of Listeria monocytogenes. J. Exp. Med. 1988, 167, 1459–1471. [Google Scholar] [CrossRef]
- Kocks, C.; Gouin, E.; Tabouret, M.; Berche, P.; Ohayon, H.; Cossart, P.L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 1992, 68, 521–531. [Google Scholar] [CrossRef]
- Tijoriwalla, S.; Liyanage, T.; Herath, T.U.; Lee, N.; Rehman, A.; Gianfelice, A.; Ireton, K. The host GTPase Dynamin 2 modulates apical junction structure to control cell-to-cell spread of Listeria monocytogenes. Infect. Immun. 2024, 92, e00136-24. [Google Scholar] [CrossRef]
- Rajabian, T.; Gavicherla, B.; Heisig, M.; Müller-Altrock, S.; Goebel, W.; Gray-Owen, S.D.; Ireton, K. The bacterial virulence factor InlC perturbs apical cell junctions and promotes cell-to-cell spread of Listeria. Nat. Cell Biol. 2009, 11, 1212–1218. [Google Scholar] [CrossRef] [PubMed]
- Drolia, R.; Amalaradjou, M.A.R.; Ryan, V.; Tenguria, S.; Liu, D.; Bai, X.; Xu, L.; Singh, A.K.; Cox, A.D.; Bernal-Crespo, V. Receptor-targeted engineered probiotics mitigate lethal Listeria infection. Nat. Commun. 2020, 11, 6344. [Google Scholar] [CrossRef]
- Liu, D.; Bai, X.; Helmick, H.D.; Samaddar, M.; Amalaradjou, M.A.R.; Li, X.; Tenguria, S.; Gallina, N.L.; Xu, L.; Drolia, R. Cell-surface anchoring of Listeria adhesion protein on L. monocytogenes is fastened by internalin B for pathogenesis. Cell Rep. 2023, 42, 112515. [Google Scholar] [CrossRef] [PubMed]
- Drolia, R.; Bryant, D.B.; Tenguria, S.; Jules-Culver, Z.A.; Thind, J.; Amelunke, B.; Liu, D.; Gallina, N.L.; Mishra, K.K.; Samaddar, M. Listeria adhesion protein orchestrates caveolae-mediated apical junctional remodeling of epithelial barrier for Listeria monocytogenes translocation. Mbio 2024, 15, e02821-23. [Google Scholar] [CrossRef] [PubMed]
- Veiga, E.; Cossart, P. Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells. Nat. Cell Biol. 2005, 7, 894–900. [Google Scholar] [CrossRef] [PubMed]
- Seveau, S.; Bierne, H.; Giroux, S.; Prévost, M.-C.; Cossart, P. Role of lipid rafts in E-cadherin–and HGF-R/Met–mediated entry of Listeria monocytogenes into host cells. J. Cell Biol. 2004, 166, 743–753. [Google Scholar] [CrossRef]
- Seveau, S.; Tham, T.N.; Payrastre, B.; Hoppe, A.D.; Swanson, J.A.; Cossart, P. A FRET analysis to unravel the role of cholesterol in Rac1 and PI 3-kinase activation in the InlB/Met signalling pathway. Cell. Microbiol. 2007, 9, 790–803. [Google Scholar] [CrossRef] [PubMed]
- Gessain, G.; Tsai, Y.-H.; Travier, L.; Bonazzi, M.; Grayo, S.; Cossart, P.; Charlier, C.; Disson, O.; Lecuit, M. PI3-kinase activation is critical for host barrier permissiveness to Listeria monocytogenes. J. Exp. Med. 2015, 212, 165–183. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.-H.; Chen, W.-L. Host lipid rafts as the gates for Listeria monocytogenes infection: A Mini-Review. Front. Immunol. 2020, 11, 1666. [Google Scholar] [CrossRef]
- Dhanda, A.S.; Vogl, A.W.; Ness, F.; Innocenti, M.; Guttman, J.A. mDia1 assembles a linear F-actin coat at membrane invaginations to drive Listeria monocytogenes cell-to-cell spreading. Mbio 2021, 12, e02939-21. [Google Scholar] [CrossRef] [PubMed]
- Dhanda, A.S.; Yu, C.; Lulic, K.T.; Vogl, A.W.; Rausch, V.; Yang, D.; Nichols, B.J.; Kim, S.H.; Polo, S.; Hansen, C.G. Listeria monocytogenes exploits host caveolin for cell-to-cell spreading. Mbio 2020, 11, 10-1128. [Google Scholar] [CrossRef]
- Muñoz, S.; Rivas-Santiago, B.; Enciso, J. Mycobacterium tuberculosis entry into mast cells through cholesterol-rich membrane microdomains. Scand. J. Immunol. 2009, 70, 256–263. [Google Scholar] [CrossRef]
- Kotzé, L.A.; Young, C.; Leukes, V.N.; John, V.; Fang, Z.; Walzl, G.; Lutz, M.B.; du Plessis, N. Mycobacterium tuberculosis and myeloid-derived suppressor cells: Insights into caveolin rich lipid rafts. EBioMedicine 2020, 53, 102670. [Google Scholar] [CrossRef]
- Wu, Y.; Riehle, A.; Pollmeier, B.; Kadow, S.; Schumacher, F.; Drab, M.; Kleuser, B.; Gulbins, E.; Grassmé, H. Caveolin-1 affects early mycobacterial infection and apoptosis in macrophages and mice. Tuberculosis 2024, 147, 102493. [Google Scholar] [CrossRef] [PubMed]
- Goldmann, O.; Lang, J.C.; Rohde, M.; May, T.; Molinari, G.; Medina, E. Alpha-hemolysin promotes internalization of Staphylococcus aureus into human lung epithelial cells via caveolin-1-and cholesterol-rich lipid rafts. Cell. Mol. Life Sci. 2024, 81, 435. [Google Scholar] [CrossRef] [PubMed]
- Rohde, M.; Müller, E.; Chhatwal, G.S.; Talay, S.R. Host cell caveolae act as an entry-port for group A streptococci. Cell. Microbiol. 2003, 5, 323–342. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhou, X.; Cheng, L.; Li, M. The adhesion and invasion mechanisms of Streptococci. Curr. Issues Mol. Biol. 2019, 32, 521–560. [Google Scholar] [CrossRef]
- Toh, H.; Lin, C.-Y.; Nakajima, S.; Aikawa, C.; Nozawa, T.; Nakagawa, I. Group A Streptococcus NAD-glycohydrolase inhibits caveolin 1-mediated internalization into human epithelial cells. Front. Cell. Infect. Microbiol. 2019, 9, 398. [Google Scholar] [CrossRef]
- De Gaetano, G.V.; Lentini, G.; Coppolino, F.; Famà, A.; Pietrocola, G.; Beninati, C. Engagement of α3β1 and α2β1 integrins by hypervirulent Streptococcus agalactiae in invasion of polarized enterocytes. Front. Microbiol. 2024, 15, 1367898. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, B.J.; Lannes-Costa, P.S.; Santos, G.d.S.; Mermelstein, C.; Einicker-Lamas, M.; Nagao, P.E. Involvement of lipid microdomains in human endothelial cells infected by Streptococcus agalactiae type III belonging to the hypervirulent ST-17. Memórias Do Inst. Oswaldo Cruz 2020, 115, e190398. [Google Scholar] [CrossRef] [PubMed]
- Asmat, T.M.; Agarwal, V.; Saleh, M.; Hammerschmidt, S. Endocytosis of Streptococcus pneumoniae via the polymeric immunoglobulin receptor of epithelial cells relies on clathrin and caveolin dependent mechanisms. Int. J. Med. Microbiol. 2014, 304, 1233–1246. [Google Scholar] [CrossRef]
- Naroeni, A.; Porte, F. Role of cholesterol and the ganglioside GM1 in entry and short-term survival of Brucella suis in murine macrophages. Infect. Immun. 2002, 70, 1640–1644. [Google Scholar] [CrossRef] [PubMed]
- Watarai, M.; Makino, S.i.; Fujii, Y.; Okamoto, K.; Shirahata, T. Modulation of Brucella-induced macropinocytosis by lipid rafts mediates intracellular replication. Cell. Microbiol. 2002, 4, 341–355. [Google Scholar] [CrossRef]
- Lee, J.J.; Kim, D.G.; Kim, D.H.; Simborio, H.L.; Min, W.; Lee, H.J.; Her, M.; Jung, S.C.; Watarai, M.; Kim, S. Interplay between clathrin and Rab5 controls the early phagocytic trafficking and intracellular survival of Brucella abortus within HeLa cells. J. Biol. Chem. 2013, 288, 28049–28057. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; McDaniel, J.P.; Kopecko, D.J. Signal transduction events involved in human epithelial cell invasion by Campylobacter jejuni 81-176. Microb. Pathog. 2006, 40, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Watson, R.O.; Galán, J.E. Campylobacter jejuni survives within epithelial cells by avoiding delivery to lysosomes. PLoS Pathog. 2008, 4, e14. [Google Scholar] [CrossRef] [PubMed]
- Stelzner, K.; Vollmuth, N.; Rudel, T. Intracellular lifestyle of Chlamydia trachomatis and host–pathogen interactions. Nat. Rev. Microbiol. 2023, 21, 448–462. [Google Scholar] [CrossRef] [PubMed]
- Norkin, L.C.; Wolfrom, S.A.; Stuart, E.S. Association of caveolin with Chlamydia trachomatis inclusions at early and late stages of infection. Exp. Cell Res. 2001, 266, 229–238. [Google Scholar] [CrossRef]
- Webley, W.C.; Norkin, L.C.; Stuart, E.S. Caveolin-2 associates with intracellular chlamydial inclusions independently of caveolin-1. BMC Infect. Dis. 2004, 4, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hybiske, K.; Stephens, R.S. Mechanisms of Chlamydia trachomatis entry into nonphagocytic cells. Infect. Immun. 2007, 75, 3925–3934. [Google Scholar] [CrossRef]
- Sui, Z.-h.; Xu, H.; Wang, H.; Jiang, S.; Chi, H.; Sun, L. Intracellular trafficking pathways of Edwardsiella tarda: From clathrin-and caveolin-mediated endocytosis to endosome and lysosome. Front. Cell. Infect. Microbiol. 2017, 7, 400. [Google Scholar] [CrossRef]
- Hu, T.; Zhang, L.; Wang, W.; Yang, D.; Xiao, J.; Zhang, Y.; Liu, X.; Liu, Q. Edwardsiella piscicida enters nonphagocytic cells via a macropinocytosis-involved hybrid mechanism. J. Bacteriol. 2019, 201, e00548-18. [Google Scholar] [CrossRef] [PubMed]
- Rikihisa, Y. Anaplasma phagocytophilum and Ehrlichia chaffeensis: Subversive manipulators of host cells. Nat. Rev. Microbiol. 2010, 8, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Rikihisa, Y. Obligatory intracellular parasitism by Ehrlichia chaffeensis and Anaplasma phagocytophilum involves caveolae and glycosylphosphatidylinositol-anchored proteins. Cell. Microbiol. 2003, 5, 809–820. [Google Scholar] [CrossRef]
- Lind, M.C.H.; Naimi, W.A.; Chiarelli, T.J.; Sparrer, T.; Ghosh, M.; Shapiro, L.; Carlyon, J.A. Anaplasma phagocytophilum invasin AipA interacts with CD13 to elicit Src kinase signaling that promotes infection. Mbio 2024, 15, e01561-24. [Google Scholar] [CrossRef] [PubMed]
- Vila, J.; Sáez-López, E.; Johnson, J.R.; Römling, U.; Dobrindt, U.; Cantón, R.; Giske, C.; Naas, T.; Carattoli, A.; Martínez-Medina, M. Escherichia coli: An old friend with new tidings. FEMS Microbiol. Rev. 2016, 40, 437–463. [Google Scholar] [CrossRef] [PubMed]
- Eto, D.S.; Gordon, H.B.; Dhakal, B.K.; Jones, T.A.; Mulvey, M.A. Clathrin, AP-2, and the NPXY-binding subset of alternate endocytic adaptors facilitate FimH-mediated bacterial invasion of host cells. Cell. Microbiol. 2008, 10, 2553–2567. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.-S.; Gao, Z.; Abraham, S.N. Involvement of cellular caveolae in bacterial entry into mast cells. Science 2000, 289, 785–788. [Google Scholar] [CrossRef]
- Sukumaran, S.K.; Quon, M.J.; Prasadarao, N.V. Escherichia coli K1 internalization via caveolae requires caveolin-1 and protein kinase Cα interaction in human brain microvascular endothelial cells. J. Biol. Chem. 2002, 277, 50716–50724. [Google Scholar] [CrossRef]
- Chi, F.; Jong, T.D.; Wang, L.; Ouyang, Y.; Wu, C.; Li, W.; Huang, S.H. Vimentin-mediated signalling is required for IbeA+ E. coli K1 invasion of human brain microvascular endothelial cells. Biochem. J. 2010, 427, 79–90. [Google Scholar] [CrossRef]
- Huang, S.-H.; Chi, F.; Peng, L.; Bo, T.; Zhang, B.; Liu, L.-Q.; Wu, X.; Mor-Vaknin, N.; Markovitz, D.M.; Cao, H. Vimentin, a novel NF-κB regulator, is required for meningitic Escherichia coli K1-induced pathogen invasion and PMN transmigration across the blood-brain barrier. PLoS ONE 2016, 11, e0162641. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Y.; Xu, X.; Zhang, R.; Zhang, J.; Zhang, X.; Li, Y.; Deng, S.; Lian, Z. Overexpression of Toll-like receptor 4 contributes to the internalization and elimination of Escherichia coli in sheep by enhancing caveolae-dependent endocytosis. J. Anim. Sci. Biotechnol. 2021, 12, 1–16. [Google Scholar] [CrossRef]
- Law, H.; Lin, A.E.-J.; Kim, Y.; Quach, B.; Nano, F.E.; Guttman, J.A. Francisella tularensis uses cholesterol and clathrin-based endocytic mechanisms to invade hepatocytes. Sci. Rep. 2011, 1, 192. [Google Scholar] [CrossRef]
- Tamilselvam, B.; Daefler, S. Francisella targets cholesterol-rich host cell membrane domains for entry into macrophages. J. Immunol. 2008, 180, 8262–8271. [Google Scholar] [CrossRef] [PubMed]
- Clemens, D.L.; Lee, B.-Y.; Horwitz, M.A. Francisella tularensis phagosomal escape does not require acidification of the phagosome. Infect. Immun. 2009, 77, 1757–1773. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Weaver, A.; Wu, E.; Li, Y.; Gao, H.; Fan, W.; Wu, M. Lipid-based signaling modulates DNA repair response and survival against Klebsiella pneumoniae infection in host cells and in mice. Am. J. Respir. Cell Mol. Biol. 2013, 49, 798–807. [Google Scholar] [CrossRef]
- Guo, Q.; Shen, N.; Yuan, K.; Li, J.; Wu, H.; Zeng, Y.; Fox III, J.; Bansal, A.K.; Singh, B.B.; Gao, H. Caveolin-1 plays a critical role in host immunity against Klebsiella pneumoniae by regulating STAT 5 and A kt activity. Eur. J. Immunol. 2012, 42, 1500–1511. [Google Scholar] [CrossRef] [PubMed]
- Sun, A.-H.; Liu, X.-X.; Yan, J. Leptospirosis is an invasive infectious and systemic inflammatory disease. Biomed. J. 2020, 43, 24–31. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, J.; Jia, X.; Yang, Y.; Liu, L.; Nie, W.; Fang, Z. Internalization of Leptospira interrogans via diverse endocytosis mechanisms in human macrophages and vascular endothelial cells. PLOS Neglected Trop. Dis. 2022, 16, e0010778. [Google Scholar] [CrossRef]
- Lei, S.; Li, J.; Yu, J.; Li, F.; Pan, Y.; Chen, X.; Ma, C.; Zhao, W.; Tang, X. Porphyromonas gingivalis bacteremia increases the permeability of the blood-brain barrier via the Mfsd2a/Caveolin-1 mediated transcytosis pathway. Int. J. Oral Sci. 2023, 15, 3. [Google Scholar] [CrossRef]
- Faulstich, M.; Hagen, F.; Avota, E.; Kozjak-Pavlovic, V.; Winkler, A.C.; Xian, Y.; Schneider-Schaulies, S.; Rudel, T. Neutral sphingomyelinase 2 is a key factor for P or B-dependent invasion of Neisseria gonorrhoeae. Cell. Microbiol. 2015, 17, 241–253. [Google Scholar] [CrossRef]
- Faulstich, M.; Böttcher, J.-P.; Meyer, T.F.; Fraunholz, M.; Rudel, T. Pilus phase variation switches gonococcal adherence to invasion by caveolin-1-dependent host cell signaling. PLoS Pathog. 2013, 9, e1003373. [Google Scholar] [CrossRef] [PubMed]
- Tamai, R.; Asai, Y.; Ogawa, T. Requirement for intercellular adhesion molecule 1 and caveolae in invasion of human oral epithelial cells by Porphyromonas gingivalis. Infect. Immun. 2005, 73, 6290–6298. [Google Scholar] [CrossRef]
- Zaas, D.W.; Swan, Z.D.; Brown, B.J.; Li, G.; Randell, S.H.; Degan, S.; Sunday, M.E.; Wright, J.R.; Abraham, S.N. Counteracting signaling activities in lipid rafts associated with the invasion of lung epithelial cells by Pseudomonas aeruginosa. J. Biol. Chem. 2009, 284, 9955–9964. [Google Scholar] [CrossRef]
- Bajmoczi, M.; Gadjeva, M.; Alper, S.L.; Pier, G.B.; Golan, D.E. Cystic fibrosis transmembrane conductance regulator and caveolin-1 regulate epithelial cell internalization of Pseudomonas aeruginosa. Am. J. Physiol. -Cell Physiol. 2009, 297, C263–C277. [Google Scholar] [CrossRef] [PubMed]
- Thuenauer, R.; Kühn, K.; Guo, Y.; Kotsis, F.; Xu, M.; Trefzer, A.; Altmann, S.; Wehrum, S.; Heshmatpour, N.; Faust, B.; et al. The Lectin LecB Induces Patches with Basolateral Characteristics at the Apical Membrane to Promote Pseudomonas aeruginosa Host Cell Invasion. mBio 2022, 13, e0081922. [Google Scholar] [CrossRef] [PubMed]
- Yuan, K.; Huang, C.; Fox, J.; Gaid, M.; Weaver, A.; Li, G.; Singh, B.B.; Gao, H.; Wu, M. Elevated inflammatory response in caveolin-1-deficient mice with Pseudomonas aeruginosa infection is mediated by STAT3 protein and nuclear factor κB (NF-κB). J. Biol. Chem. 2011, 286, 21814–21825. [Google Scholar] [CrossRef] [PubMed]
- Gadjeva, M.; Paradis-Bleau, C.; Priebe, G.P.; Fichorova, R.; Pier, G.B. Caveolin-1 modifies the immunity to Pseudomonas aeruginosa. J. Immunol. 2010, 184, 296–302. [Google Scholar] [CrossRef]
- Salje, J. Cells within cells: Rickettsiales and the obligate intracellular bacterial lifestyle. Nat. Rev. Microbiol. 2021, 19, 375–390. [Google Scholar] [CrossRef]
- Sahni, A.; Patel, J.; Narra, H.P.; Schroeder, C.L.; Walker, D.H.; Sahni, S.K. Fibroblast growth factor receptor-1 mediates internalization of pathogenic spotted fever rickettsiae into host endothelium. PLoS ONE 2017, 12, e0183181. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.J.; Seveau, S.; Veiga, E.; Matsuyama, S.; Cossart, P. Ku70, a component of DNA-dependent protein kinase, is a mammalian receptor for Rickettsia conorii. Cell 2005, 123, 1013–1023. [Google Scholar] [CrossRef]
- Lim, J.S.; Shin, M.; Kim, H.-J.; Kim, K.S.; Choy, H.E.; Cho, K.A. Caveolin-1 mediates Salmonella invasion via the regulation of SopE-dependent Rac1 activation and actin reorganization. J. Infect. Dis. 2014, 210, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Hoeke, L.; Sharbati, J.; Pawar, K.; Keller, A.; Einspanier, R.; Sharbati, S. Intestinal Salmonella typhimurium infection leads to miR-29a induced caveolin 2 regulation. PLoS ONE 2013, 8, e67300. [Google Scholar] [CrossRef]
- De Almeida, C.J.G. Caveolin-1 and caveolin-2 can be antagonistic partners in inflammation and beyond. Front. Immunol. 2017, 8, 1530. [Google Scholar] [CrossRef]
- Lim, J.S.; Na, H.S.; Lee, H.C.; Choy, H.E.; Park, S.C.; Han, J.M.; Cho, K.A. Caveolae-mediated entry of Salmonella typhimurium in a human M-cell model. Biochem. Biophys. Res. Commun. 2009, 390, 1322–1327. [Google Scholar] [CrossRef]
- Medina, F.A.; De Almeida, C.J.; Dew, E.; Li, J.; Bonuccelli, G.; Williams, T.M.; Cohen, A.W.; Pestell, R.G.; Frank, P.G.; Tanowitz, H.B. Caveolin-1-deficient mice show defects in innate immunity and inflammatory immune response during Salmonella enterica serovar Typhimurium infection. Infect. Immun. 2006, 74, 6665–6674. [Google Scholar] [CrossRef] [PubMed]
- Dhanda, A.S.; Guttman, J.A. Localization of host endocytic and actin-associated proteins during Shigella flexneri intracellular motility and intercellular spreading. Anat. Rec. 2023, 306, 1088–1110. [Google Scholar] [CrossRef] [PubMed]
- Razin, S. The Mycoplasmatales. In Handbook of Microbiology; CRC Press: Boca Raton, FL, USA, 2019; pp. 99–123. [Google Scholar]
- Xiu, F.; Li, X.; Liu, L.; Xi, Y.; Yi, X.; Li, Y.; You, X. Mycoplasma invasion into host cells: An integrated model of infection strategy. Mol. Microbiol. 2024, 121, 814–830. [Google Scholar] [CrossRef] [PubMed]
- Raymond, B.; Turnbull, L.; Jenkins, C.; Madhkoor, R.; Schleicher, I.; Uphoff, C.; Whitchurch, C.; Rohde, M.; Djordjevic, S. Mycoplasma hyopneumoniae resides intracellularly within porcine epithelial cells. Sci. Rep. 2018, 8, 17697. [Google Scholar] [CrossRef] [PubMed]
- Olofsson, A.; Nygård Skalman, L.; Obi, I.; Lundmark, R.; Arnqvist, A. Uptake of Helicobacter pylori vesicles is facilitated by clathrin-dependent and clathrin-independent endocytic pathways. MBio 2014, 5, e00979-14. [Google Scholar] [CrossRef] [PubMed]
- Badaut, J.; Blochet, C.; Obenaus, A.; Hirt, L. Physiological and pathological roles of caveolins in the central nervous system. Trends Neurosci. 2024, 47, 651–664. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, H.; Cui, Z.; Li, Y.; Zhuo, J.; Ye, J.; Zhang, Z.; Lian, Z.; Du, Q.; Zhao, K.-N. The HPV16E7 Affibody as a Novel Potential Therapeutic Agent for Treating Cervical Cancer Is Likely Internalized through Dynamin and Caveolin-1 Dependent Endocytosis. Biomolecules 2022, 12, 1114. [Google Scholar] [CrossRef]
- Kruglikov, I.L.; Scherer, P.E. Caveolin-1 as a possible target in the treatment for acne. Exp. Dermatol. 2020, 29, 177–183. [Google Scholar] [CrossRef] [PubMed]
Pathogen | Pathway | Caveolin Involved | Reference |
---|---|---|---|
Bacterial invasion and intracellular survival | |||
Anaplasma phagocytophilum | Bacterial internalization and intracellular survival within caveosome | Cav-1 | [73] |
Brucella spp. | Caveolin-mediated entry | Cav-1 | [61,62] |
Campylobacter jejuni | Helps in bacterial internalization and intracellular survival | Cav-1 | [64,65] |
Edwardsiella tarda | Caveolin-mediated invasion and intracellular survival | Cav-1 | [70,71] |
Ehrlichia chaffeensis | Bacterial internalization and intracellular survival within caveosome | Cav-1 | [73] |
Escherichia coli | Caveolin-mediated invasion and intracellular survival | Cav-1 | [78,80] |
Fransicella tularensis | Caveolin-mediated entry into macrophages and hepatocytes; proliferation inside macrophages | Cav-1 | [82,83] |
Helicobacter pylori | Caveolin-mediated entry into human gastric adenocarcinoma cell line | Cav-1 | [110] |
Klebsiella pneumonae | Caveolin-mediated internalization | Cav-1 | [85] |
Leptospira | Caveolin-mediated entry | Cav-1 | [88] |
Listeria monocytogenes | Apical junctional remodeling for bacterial translocation and internalization. | Cav-1 | [43,45] |
Mycoplasma spp. | Caveolin-mediated internalization | Cav-1 | [55] |
Neisseria gonorrhoeae | Caveolin-mediated invasion | Cav-1 | [90,91] |
Porphyromonas gingivalis | Caveolin-mediated internalization | Cav-1 | [89] |
Pseudomonas aeruginosa | Lipid raft-mediated endocytosis | Cav-1 and Cav-2 | [25,94,95] |
Rickettsia spp. | Caveolin-mediated endocytic pathway for bacterial entry | Cav-1 and Cav-2 | [95,98,99] |
Salmonella enterica serovar Typhimurium | Caveolin-mediated internalization and transcytosis | Cav-1 and Cav-2. | [102,104] |
Streptococcus spp. | Invasion and intracellular survival; caveosome-mediated internalization | Cav-1 | [56] |
Intracellular survival and cell–cell spread | |||
Leptospira | Intracellular migration through the vesicular transport system initiated by caveolin | Cav-1 | [87] |
Listeria monocytogenes | Cell-to-cell spreading | Cav-1 | [50] |
Shigella flexneri | Cell-to-cell spreading | Cav-1 | [106] |
Modulation of host immune responses | |||
Escherichia coli K1 | Increase inflammation in brain cells | Cav-1 | [80] |
Klebsiella pneumoniae | Modulation of host immunity through STAT5-Akt signaling pathway | Cav-1 | [86] |
Mycobacterium bovis Bacillus Calmette-Guérin (BCG) | Cav-1 regulates apoptosis and the inflammatory response in macrophages infected with BCG | Cav-1 | [53] |
Pseudomonas aeruginosa | Downregulates inflammatory response in host cells | Cav-1 | [94,96,97] |
Salmonella enterica serovar Typhimurium | Regulate anti-inflammatory responses in macrophages | Cav-1 | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barman, D.; Drolia, R. Caveolin-Mediated Endocytosis: Bacterial Pathogen Exploitation and Host–Pathogen Interaction. Cells 2025, 14, 2. https://doi.org/10.3390/cells14010002
Barman D, Drolia R. Caveolin-Mediated Endocytosis: Bacterial Pathogen Exploitation and Host–Pathogen Interaction. Cells. 2025; 14(1):2. https://doi.org/10.3390/cells14010002
Chicago/Turabian StyleBarman, Dibyasri, and Rishi Drolia. 2025. "Caveolin-Mediated Endocytosis: Bacterial Pathogen Exploitation and Host–Pathogen Interaction" Cells 14, no. 1: 2. https://doi.org/10.3390/cells14010002
APA StyleBarman, D., & Drolia, R. (2025). Caveolin-Mediated Endocytosis: Bacterial Pathogen Exploitation and Host–Pathogen Interaction. Cells, 14(1), 2. https://doi.org/10.3390/cells14010002