Abstract
Throughout evolution primate genomes have been modified by waves of retrotransposon insertions1,2,3. For each wave, the host eventually finds a way to repress retrotransposon transcription and prevent further insertions. In mouse embryonic stem cells, transcriptional silencing of retrotransposons requires KAP1 (also known as TRIM28) and its repressive complex, which can be recruited to target sites by KRAB zinc-finger (KZNF) proteins such as murine-specific ZFP809 which binds to integrated murine leukaemia virus DNA elements and recruits KAP1 to repress them4,5. KZNF genes are one of the fastest growing gene families in primates and this expansion is hypothesized to enable primates to respond to newly emerged retrotransposons6,7. However, the identity of KZNF genes battling retrotransposons currently active in the human genome, such as SINE-VNTR-Alu (SVA)8 and long interspersed nuclear element 1 (L1)9, is unknown. Here we show that two primate-specific KZNF genes rapidly evolved to repress these two distinct retrotransposon families shortly after they began to spread in our ancestral genome. ZNF91 underwent a series of structural changes 8–12 million years ago that enabled it to repress SVA elements. ZNF93 evolved earlier to repress the primate L1 lineage until ∼12.5 million years ago when the L1PA3-subfamily of retrotransposons escaped ZNF93’s restriction through the removal of the ZNF93-binding site. Our data support a model where KZNF gene expansion limits the activity of newly emerged retrotransposon classes, and this is followed by mutations in these retrotransposons to evade repression, a cycle of events that could explain the rapid expansion of lineage-specific KZNF genes.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
£199.00 per year
only £3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Kazazian, H. H. Mobile elements: drivers of genome evolution. Science 303, 1626–1632 (2004)
Cordaux, R. & Batzer, M. A. The impact of retrotransposons on human genome evolution. Nature Rev. Genet. 10, 691–703 (2009)
Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001)
Wolf, D. & Goff, S. P. TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells. Cell 131, 46–57 (2007)
Wolf, D. & Goff, S. P. Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature 458, 1201–1204 (2009)
Birtle, Z. & Ponting, C. P. Meisetz and the birth of the KRAB motif. Bioinformatics 22, 2841–2845 (2006)
Thomas, J. H. & Schneider, S. Coevolution of retroelements and tandem zinc finger genes. Genome Res. 21, 1800–1812 (2011)
Wang, H. et al. SVA elements: a hominid-specific retroposon family. J. Mol. Biol. 354, 994–1007 (2005)
Khan, H., Smit, A. & Boissinot, S. Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates. Genome Res. 16, 78–87 (2006)
Rowe, H. M. et al. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463, 237–240 (2010)
Turelli, P. et al. Interplay of TRIM28 and DNA methylation in controlling human endogenous retroelements. Genome Res. 24, 1260–1270 (2014)
Castro-Diaz, N. et al. Evolutionally dynamic L1 regulation in embryonic stem cells. Genes Dev. 28, 1397–1409 (2014)
Huntley, S. et al. A comprehensive catalog of human KRAB-associated zinc finger genes: insights into the evolutionary history of a large family of transcriptional repressors. Genome Res. 16, 669–677 (2006)
Kai, Y. et al. Enhanced apoptosis during early neuronal differentiation in mouse ES cells with autosomal imbalance. Cell Res. 19, 247–258 (2009)
Gifford, W. D., Pfaff, S. L. & Macfarlan, T. S. Transposable elements as genetic regulatory substrates in early development. Trends Cell Biol. 23, 218–226 (2013)
Ward, M. C. et al. Latent regulatory potential of human-specific repetitive elements. Mol. Cell 49, 262–272 (2013)
Hancks, D. C. & Kazazian, H. H. Active human retrotransposons: variation and disease. Curr. Opin. Genet. Dev. 22, 191–203 (2012)
Bellefroid, E. J. et al. Emergence of the ZNF91 Krüppel-associated box-containing zinc finger gene family in the last common ancestor of anthropoidea. Proc. Natl Acad. Sci. USA 92, 10757–10761 (1995)
Levin, H. L. & Moran, J. V. Dynamic interactions between transposable elements and their hosts. Nature Rev. Genet. 12, 615–627 (2011)
Persikov, A. V., Osada, R. & Singh, M. Predicting DNA recognition by Cys2His2 zinc finger proteins. Bioinformatics 25, 22–29 (2009)
Moore, M., Choo, Y. & Klug, A. Design of polyzinc finger peptides with structured linkers. Proc. Natl Acad. Sci. USA 98, 1432–1436 (2001)
Ostertag, E. M., Prak, E. T., DeBerardinis, R. J., Moran, J. V. & Kazazian, H. H. Determination of L1 retrotransposition kinetics in cultured cells. Nucleic Acids Res. 28, 1418–1423 (2000)
Kimberland, M. L. et al. Full-length human L1 insertions retain the capacity for high frequency retrotransposition in cultured cells. Hum. Mol. Genet. 8, 1557–1560 (1999)
Swergold, G. D. Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol. Cell. Biol. 10, 6718–6729 (1990)
Lowe, C. B., Bejerano, G. & Haussler, D. Thousands of human mobile element fragments undergo strong purifying selection near developmental genes. Proc. Natl Acad. Sci. USA 104, 8005–8010 (2007)
Parkhomchuk, D. et al. Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res. 37, e123 (2009)
Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013)
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nature Methods 9, 357–359 (2012)
Hsu, F. et al. The UCSC known genes. Bioinformatics 22, 1036–1046 (2006)
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009)
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010)
Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010)
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008)
Onodera, C. S. et al. Gene isoform specificity through enhancer-associated antisense transcription. PLoS ONE 7, e43511 (2012)
Ying, Q.-L., Stavridis, M., Griffiths, D., Li, M. & Smith, A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nature Biotechnol. 21, 183–186 (2003)
Hancks, D. C., Mandal, P. K., Cheung, L. E. & Kazazian, H. H. The minimal active human SVA retrotransposon requires only the 5′-hexamer and Alu-like domains. Mol. Cell. Biol. 32, 4718–4726 (2012)
Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002)
Löytynoja, A. & Goldman, N. Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science 320, 1632–1635 (2008)
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004)
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013)
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013)
Rzhetsky, A. & Nei, M. A simple method for estimating and testing minimum-evolution trees. Mol. Biol. Evol. 9, 945–967 (1992)
Tamura, K. et al. Estimating divergence times in large molecular phylogenies. Proc. Natl Acad. Sci. USA 109, 19333–19338 (2012)
Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999)
Naas, T. P. et al. An actively retrotransposing, novel subfamily of mouse L1 elements. EMBO J. 17, 590–597 (1998)
Acknowledgements
This work was supported by California Institute of Regenerative Medicine (CIRM) facility awards (FA1-00617, CL1-00506-1.2) and scholar awards (TG2-01157) to F.M.J.J. and D.G. and F.M.J.J. also received a Human Frontier Science Program Postdoctoral fellowship (LT000689). D.H. is an Investigator of the Howard Hughes Medical Institute. S.K. is supported by the California Institute for Quantitative Biosciences, A.D.E. was supported by TCGA U24 24010-443720, M.H. by EMBO ALTF 292-2011, and B.P. and N.N. by ENCODE U41HG004568. We thank F. Wianny and C. Dehay (Lyon University) for the LYON-ES1 macaque embryonic stem cells; M. Oshimura and T. Inoue (Tottori University) for the E14(hChr11) trans-chromosomic embryonic stem cells, N. Pourmand and the UCSC genome sequencing center; B. Nazario (UCSC Institute for the Biology of Stem Cells) for flow cytometry assistance; M. Batzer (LSU) and K. Han (Dankook University) for L1CER sequences; L. Carbone (OHSU) for gibbon genomic DNA; A. Smit (ISB, Seattle) for discussions on L1PA evolution; D. Segal (UC Davis) for advice on ZNF mutations; H. Kazazian, D. Hancks and J. Goodier (JHMI) for retrotransposition plasmids and advice; K. Tygi, C. Vizenor, J. Rosenkrantz, W. Novey, S. Kyane and B. Mylenek for technical assistance and the entire Haussler laboratory for discussions and support.
Author information
Authors and Affiliations
Contributions
F.M.J.J., D.G., D.H. and S.R.S. designed and analysed the experiments. F.M.J.J. performed RNA-seq, ChIP-seq and reintroduction of primate ZNFs in trans-chromosomic mESCs; D.G. performed ZNF cloning, luciferase reporter and retrotransposition assays; N.N., D.G., A.D.E. and B.P. performed resequencing and analysis to complete the ZNF91 and ZNF93 loci in various primates; N.N. and B.P. reconstructed the evolutionary history of ZNF91 and ZNF93 ZNF domains; M.H. generated a Repeatmasker UCSC-Browser and hub, ZNF-binding site predictions and VNTR length analysis; S.K. processed and analysed RNA-seq and ChIP-seq data; A.D.E. analysed SVA numbers in great apes and SVA–gene-expression correlations. F.M.J.J., D.G., S.R.S. and D.H. wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Extended data figures and tables
Extended Data Figure 1 KAP1 associates with recently emerged transposable elements.
a, Immunoblot incubated with anti-KAP1 antibody loaded with 1% input and eluates of KAP1-ChIP or IgG-ChIP derived from hESC lysates. b, Diagram showing numbers of KAP1 peaks identified in two independent biological replicates and common peaks. c, Distribution of 9,174 KAP1-ChIP-seq peaks over various DNA elements. d, Distribution of retrotransposon classes among KAP1-ChIP peaks from hESCs (left) or genome-wide (right). e, KAP1 and H3K4me3 ChIP-seq and RNA-seq coverage tracks for a representative region on human chromosome 11 in hESCs (white- or grey-shaded) and TC11-mESCs (yellow-shaded). Blue arrows, derepressed retrotransposons; black arrows, re-activated transcription; red vertical shading, reactivated SVAs; orange shading, reactivated LTR12C. Blue and tan in RNA-seq tracks indicate positive and negative strand transcripts, respectively. Note that while the majority of SVAs display aberrant H3K4me3 signal, for unclear reasons not all SVAs display aberrant transcription in TC11-mESCs. Rep, biological replicate; sup, supernatant; TSS, transcription start site.
Extended Data Figure 2 Mouse KAP1 associates with mouse-specific retrotransposons in mouse ESCs.
a, Distribution of KAP1-ChIP-Seq reads from mESCs (left) and the mouse genome (right) for retrotransposon families as defined by RepeatMasker (http://www.repeatmasker.org/). b, UCSC Browser image displaying ChIP-seq tracks for input (grey shading) and KAP1 (red shading) as well as gene annotation and repeat element tracks for a region on mouse chromosome 1. Blue shading, KAP1-positive active mouse L1-subtypes45; purple shading, KAP1-positive active intracisternal A-particle (IAP) retrotransposons. LINES, long interspersed nuclear elements; LTR, long terminal repeat; MMERVK10C, mouse endogenous retrovirus subtype K10C; RMER, medium reiteration frequency repetitive sequence; SINES, short interspersed nuclear elements; TEs, transposable elements.
Extended Data Figure 3 Selection of primate-specific KZNF genes with high expression in hESCs.
a, Schematic of primate-specific KRAB zinc-finger genes subdivided in different clades based on previous analysis7. KZNFs shown in b are highlighted in red. b, DESeq-calculated gene expression levels for the 17 highest expressed KRAB zinc-finger genes in hESCs (dark blue) and macaque ESCs (light blue), subdivided by clades.
Extended Data Figure 4 The SVA VNTR domain is necessary and sufficient for ZNF91-mediated repression of luciferase activity.
a–c, Schematic of SV40–luciferase constructs used (left) and relative luciferase activity after transfection of the indicated constructs in mESCs (right). a, SVA and SINE-R are strong enhancers (n = 6 biological replicates). b, Deletion analysis reveals the VNTR of SVA is required for ZNF91-mediated reporter regulation. Luciferase activity in the presence of ZNF91 expressed as a ratio of that observed for empty vector with the same reporter. Biological replicates: no VNTR, n = 9; partial VNTR, n = 3; no hex/Alu, n = 2; no hex, n = 2; full length SVA, n = 15; SINE-R, n = 3. Empty vector is set to 100% for comparison. c, 1.5 VNTR repeats are sufficient to confer ZNF91-mediated regulation on an OCT4Enh–SV40–luciferase-reporter. n = 3 biological replicates. **P < 0.01; error bars are s.e.m.
Extended Data Figure 5 SVA is specifically repressed in vivo by ZNF91.
a, b, Normalized DESeq basemean values for H3K4me3 ChIP-seq (a) and RNA-seq (b) for retrotransposon classes that showed a significant change in ZNF91-transfected TC11-mESCs relative to empty vector. SVAs were the only transposable elements that showed a significant decrease in H3K4me3 and RNA-seq values. **Benjamini–Hochberg adjusted-P < 0.01. c, UCSC browser images for a representative SVA element, promoter and L1PA4 element, showing H3K4me3 ChIP-seq signal for hESCs (grey), TC11-mESCs transfected with empty vector (yellow), pools of primate-specific KRAB zinc-fingers (green) and ZNF91 (red). TSSC4: tumor-suppressing subtransferable candidate 4.
Extended Data Figure 6 Evolutionary history of ZNF91.
a, The phylogenetic tree used in multiple sequence alignment and ancestral reconstruction of ZNF91 (Supplementary Information File 3). ‘hu 1.1’, ‘ch 1.1’ and ‘go 1.1’ represent human, chimpanzee and gorilla domain 6, respectively, ‘hu 1.2’, ‘ch 1.2’, ‘go 1.2’ represent human, chimpanzee and gorilla domains 7–12, respectively, and ‘hu 2’, ‘ch 2’ and ‘go 2’ represent the ZNF91 sequence from start to domain 5, a breakpoint, and from domain 13 to the end (see Methods). Ancestors are labelled with first letters of leaf species below them, for example, HCG is a human–chimp–gorilla ancestor. b, Immunoblot incubated with anti-HA antibody on lysates of HEK293FT cells transfected with HA-tagged human, great ape, hominine and macaque ZNF91 proteins or lysates transfected with an empty vector and pCAG–GFP. Asterisks denote reconstructed ancestral proteins. c, ZNF91 domain deletion analysis showing relative luciferase activities on the SVA-D–SV40 luciferase reporter after transfection of empty vector or ZNF91 deletion constructs in mESCs. Error bars are standard deviation. Numbers in parenthesis indicate zinc-fingers present in the ZNF91 deletion construct. *P < 0.05; **P < 0.01. Biological replicates: empty vector, n = 42; ZNF91 (1–11), n = 4; ZNF91 (1–24), n = 7; ZNF91 (1–30), n = 4; ZNF91 (1, 2, 23–36), n = 3.
Extended Data Figure 7 L1PA4 elements are repressed by primate-specific ZNF93.
a, Relative luciferase activity on a L1PA4– and a OCT4-enhancer–SV40–luciferase-reporter after transfection of 14 KZNFs in mESCs. Significance measured relative to empty vector. n = 3 biological replicates; *P < 0.05; **P < 0.01; error bars are s.e.m. b, Immunoblot showing that ChIP with antibody ab104878 predominantly reacts with a protein of ∼70 kDa (left panel) and co-immunoprecipitates KAP1 (right panel). HC, heavy chain of IgG. c, Immunoblot demonstrating that ChIP with ab104878 detects overexpressed ZNF93 in 46c mESCs as a ∼70 kDa protein. d, Repeat Browser (see Methods) displaying ChIP-seq coverage tracks for ab104878 (ZNF93; yellow shading) and KAP1 (blue shading) for a selection of KAP1-bound retrotransposons. e, ChIP-qPCR for amplicons in L1PA4 and LTR12C elements on chromosome 11 in TC11-mESCs after transfection with an empty vector or ZNF93 and ChIP with ab104878. ChIP enrichment is plotted as percentage of input. n = 3 biological replicates; *P < 0.05; error bars are s.e.m.
Extended Data Figure 8 Reconstruction of the evolutionary history of ZNF93.
a, Schematic based on the multiple sequence alignment of ZNF93 orthologues (Supplementary Information File 4). Red shaded area, deletion of zinc-fingers; green shaded area, gain of zinc-fingers; green stripes, gained zinc-fingers; dark blue stripes, zinc-fingers that changed contact residues in the lineage to humans; light blue stripes, changes in other lineages; brown stripes, zinc-fingers with different binding residues between macaques and gibbons, with gibbons sharing the great ape conformation. For this last group of zinc-fingers, it is unknown (represented with a ? symbol) whether the change happened in monkeys or in the LCA of gibbons and great apes after the divergence of Old-World monkeys (see Methods). Asterisks denote reconstructed ancestral proteins. b, Relative OCT4-enhancer–SV40p–luciferase activity for reporters with the indicated L1PA4-derived sequences after co-transfection of an empty vector or various ZNF93 constructs. **P < 0.01; error bars are s.e.m.
Extended Data Figure 9 Schematic of L1Hs retrotranspostion assay.
a, Schematic of constructs tested indicating the site of 129L1PA4 transplant into L1Hs and concept of L1–GFP assay24 in which GFP expression marks cells where a transfected L1 episome has retrotransposed into a HEK293 cell’s chromosomes. ORF, open reading frame; CMV, cytomegalovirus promoter; SD, splice donor; SA, splice acceptor; PvuII, restriction enzyme site.
Extended Data Figure 10 Evolutionary history of L1PA3-6030, L1PA3-6160 and the VNTR size in SVA.
a, Phylogenetic tree, rooted on L1PA4, generated using the Minimum Evolution method42 for fifty 3′-end sequences of L1PA3-6030 and L1PA3-6160, and three 3′-end sequences for L1PA2 and L1PA4. b, Bar graphs showing the number of SVA-_A through SVA_F insertions in each great ape genome. c, Distribution of VNTR size for untruncated SVA elements in the human genome plotted for each SVA-subfamily. The number of untruncated elements identified for each subtype is indicated.
Supplementary information
Supplementary Information 1
This file contains construction details and associated primers and gene sequences for the plasmids used in this study. (PDF 238 kb)
Supplementary Information 2
This file contains primers used for generating sequence data to fill in genome assembly gaps around ZNF91 and ZNF93 in various primate genomes. (PDF 60 kb)
Supplementary Information 3
This file contains full multiple sequence alignment for ZNF91. (PDF 435 kb)
Supplementary Information 4
This file contains full multiple sequence alignment for ZNF93. (PDF 195 kb)
Rights and permissions
About this article
Cite this article
Jacobs, F., Greenberg, D., Nguyen, N. et al. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature 516, 242–245 (2014). https://doi.org/10.1038/nature13760
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature13760
This article is cited by
-
In vivo cyclic overexpression of Yamanaka factors restricted to neurons reverses age-associated phenotypes and enhances memory performance
Communications Biology (2024)
-
THE1B may have no role in human pregnancy due to ZNF430-mediated silencing
Mobile DNA (2023)
-
Loss of CpG island immunity to DNA methylation induced by mutation
Epigenetics & Chromatin (2023)
-
Loss of PHF8 induces a viral mimicry response by activating endogenous retrotransposons
Nature Communications (2023)
-
Developmental mechanisms underlying the evolution of human cortical circuits
Nature Reviews Neuroscience (2023)