[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2755996.2756641acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Computing Logarithmic Vector Fields Associated with Parametric Semi-Quasihomogeneous Hypersurface Isolated Singularities

Published: 24 June 2015 Publication History

Abstract

Logarithmic vector fields associated with parametric semi-quasihomogeneous hypersurface isolated singularities are considered in the context of symbolic computation. A new algorithm for computing the logarithmic vector fields is introduced. The keys of this approach are the concept of a polar variety and parametric local cohomology systems. The resulting algorithm also provides a decomposition of the parameter space depending on the structure of the logarithmic vector fields.

References

[1]
V. I. Arnold, Normal forms of functions in neighbourhoods of degenerate critical points, Russian Math. Survey 29, pages 10--50, 1974.
[2]
A. G. Aleksandrov, Cohomology of a quasihomogeneous complete intersection. Math. USSR Izvestiya, 26, pages 437--477, 1986.
[3]
W. Bruns and J. Herzog, Cohen-Macaulay rings, revised edition. Cambridge Univ. Press, 1998.
[4]
F. J. Calderón-Moreno, D. Mond, L. Narváez-Macarro and F. J. Castro-Jiménez, Logarithmic cohomology of the complement of a plane curve. Comment. Math. Helv. 77, pages 24--38, 2002.
[5]
F. J. Castro-Jiménez and J. M. Ucha-Enríquez, Gröbner bases and logarithmiccal D-modules. J. Symb. Comp. 41, pages 317--335, 2006.
[6]
D. Cox, J. Little and D. O'Shea, Using Algebraic Geometry. Springer, 1998.
[7]
W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, Singular 3--1-6 - A computer algebra system for polynomial computations. 2012. http://www.singular.uni-kl.de
[8]
M. Granger and M. Schulze, Quasihomogeneity of isolated hypersurface singularities and logarithmic cohomology. Manuscripta Math., 121, pages 411--416, 2006.
[9]
A. Grothendieck, Théorèmes de dualité pour les faisceaux algébriques cohérents, Séminaire Bourbaki. 149, 1957.
[10]
A. Grothendieck, Local Cohomology, notes by R. Hartshorne. Lecture Notes in Math. 41, Springer, 1967.
[11]
H. Hauser and G. Müller, Affine varieties and Lie algebras of vector fields, Manuscripta Math., 80-2, pages 309--337, 1993.
[12]
H. Hauser and G. Müller, On the Lie algebra Θ(X) of vector fields on a singularity. J. Math. Sci. Univ. Tokyo, 1, pages 239--250, 1994.
[13]
M. Kalkbrener, On the stability of Gröbner bases under specializations. J. Symb. Comp., 24, pages 51--58, 1997.
[14]
D. Kapur, Y. Sun and D. Wang, A new algorithm for computing comprehensive Gröbner systems. Proc. ISSAC2010, pages 29--36. ACM-Press, 2010.
[15]
M. Kersken, Reguläre Differentialformen. Manuscripta Math., 46, pages 1--26, 1984.
[16]
D. Lazard, Gröbner bases, Gaussian elimination, and resolution of systemsof algebraic equations. Proc. EUROCAL '83, Lecture Note in Computer Science, '162, pages 146--156, Springer, 1983.
[17]
D. T. Lê, Calcul du nombre de cycles évanouissants d'une hypersueface complexe, Ann. Inst. Fourier, Grenoble, 23, pages 261--270, 1973.
[18]
D. T. Lê et B. Teissier, Variétés polaires locales et classes de Chern des variétéssingulières. Annals of Mathematics, 114, pages 457--491, 1981.
[19]
K. Nabeshima, On the computation of parametric Gröbner bases for modules andsyzygies. Japan Journal of Industrial and Applied Mathematics, 27, No.2, pages 217--238, 2010.
[20]
K. Nabeshima, Stability conditions of monomial bases and comprehensive Gröbner systems. Proc. CASC2012, Lecture Notes in Computer Science, 7442, pages 248--259, Springer, 2012.
[21]
K. Nabeshima and S. Tajima, On efficient algorithms for computing parametric local cohomology classes associated with semi-quasihomogeneous singularities and standard bases. Proc. ISSAC2014, pages 351--358. ACM-Press, 2014.
[22]
K. Nabeshima and S. Tajima, An algorithm for computing standard bases by changer of ordering via algebraic local cohomology (Extended Abstract), Lecture Notes in Computer Science, 8592, pages 414--418. Springer, 2014.
[23]
K. Nabeshima and S. Tajima, Algebraic local cohomology with parameters and parametric standard bases for zero-dimensional ideals, submitted.
[24]
Y. Nakamura and S. Tajima, On weighted-degrees for algebraic local cohomologies associated with semiquasihomogeneous singularities, Advanced Studies in Pure Mathematics, 46, pages 105--117, 2007.
[25]
M. Noro and T. Takeshima,verb|Risa/Asir|- A computer algebra system. Proc. ISSAC1992, pages 387--396, ACM-Press, 1992. http://www.math.kobe-u.ac.jp/Asir/asir.html
[26]
J.J. Nuño-Ballesteros, B. Oréfice and J.N. Tomazella, The Bruce-Roberts number of a function on a weighted homogeneoushypersurface. The Quarterly J. Math., 64, pages 269 --280, 2013.
[27]
B. Oréfice, O número de Milnor de uma singularidade isolada. Ph.D. thesis, Federal University of São Carlos (Brazil),2011.
[28]
K. Saito, Theory of logarithmic differential forms and logarithmic vector fields. J. Fac. Sci. Univ. Tokyo, Sect. IA Math, 27, pages 265--291, 1980.
[29]
E. Sernesi, The local cohomology of the Jacobian ring. arXiv:1306.3736v4 {math.AG} 2 may 2014.
[30]
W. Sit, An algorithm for solving parametric linear systems. J. Symb. Comp., 13, pages 353--394, 1992.
[31]
S. Tajima, On polar varieties, logarithmic vector fields and holonomicD-modules. RIMS Kôkyûroku Bessatsu B40, pages 41--51,2013.
[32]
S. Tajima and Y. Nakamura, Algebraic local cohomology class attached to quasi-homogeneous isolated hypersurface singularities. Publications of the Research Institute for Mathematical Sciences, 41, pages 1--10, 2005.
[33]
S. Tajima and Y. Nakamura, Annihilating ideals for an algebraic local cohomology class. J. Symb. Comput., 44, pages 435--448, 2009.
[34]
S. Tajima and Y. Nakamura, Algebraic local cohomology classes attached to unimodal singularities. Publications of the Research Institute for Mathematical Sciences, 48, pages 21--43. 2012.
[35]
S. Tajima, Y. Nakamura and K. Nabeshima, Standard bases and algebraic local cohomology for zero dimensional ideals, Advanced Studies in Pure Mathematics, 56, pages 341--361, 2009.
[36]
B. Teissier, Cycles évanescents, sections planes et conditions de Whitney, Singularités à Cargèse, Astérisque, 7--8, pages 285--362, 1973.
[37]
J. Wahl, Automorphisms and deformations of quasi-homogeneous singularities, Proc. Sympos. Pure. Math., 40-2, pages 613--624, Amer. Math. Soc., Providence, RI, 1983.
[38]
V. Weispfenning, Comprehensive Gröbner bases. J. Symb. Comput., 36, pages 669--683, 1992.

Cited By

View all
  • (2020)An Algorithm for Computing Torsion Differential Forms Associated with an Isolated Hypersurface SingularityMathematics in Computer Science10.1007/s11786-020-00486-w15:2(353-367)Online publication date: 5-Jun-2020
  • (2020)Testing Zero-Dimensionality of Varieties at a PointMathematics in Computer Science10.1007/s11786-020-00484-y15:2(317-331)Online publication date: 5-Jun-2020
  • (2020)Computing Parametric Standard Bases for Semi-weighted Homogeneous Isolated Hypersurface SingularitiesComputer Algebra in Scientific Computing10.1007/978-3-030-60026-6_26(447-460)Online publication date: 14-Sep-2020
  • Show More Cited By

Index Terms

  1. Computing Logarithmic Vector Fields Associated with Parametric Semi-Quasihomogeneous Hypersurface Isolated Singularities

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    ISSAC '15: Proceedings of the 2015 ACM International Symposium on Symbolic and Algebraic Computation
    June 2015
    374 pages
    ISBN:9781450334358
    DOI:10.1145/2755996
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 24 June 2015

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. algebraic local cohomology
    2. logarithmic vector fields
    3. parametric standard bases
    4. singularities

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    ISSAC'15
    Sponsor:

    Acceptance Rates

    ISSAC '15 Paper Acceptance Rate 43 of 71 submissions, 61%;
    Overall Acceptance Rate 395 of 838 submissions, 47%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 27 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2020)An Algorithm for Computing Torsion Differential Forms Associated with an Isolated Hypersurface SingularityMathematics in Computer Science10.1007/s11786-020-00486-w15:2(353-367)Online publication date: 5-Jun-2020
    • (2020)Testing Zero-Dimensionality of Varieties at a PointMathematics in Computer Science10.1007/s11786-020-00484-y15:2(317-331)Online publication date: 5-Jun-2020
    • (2020)Computing Parametric Standard Bases for Semi-weighted Homogeneous Isolated Hypersurface SingularitiesComputer Algebra in Scientific Computing10.1007/978-3-030-60026-6_26(447-460)Online publication date: 14-Sep-2020
    • (2020)Generalized Integral Dependence RelationsMathematical Aspects of Computer and Information Sciences10.1007/978-3-030-43120-4_6(48-63)Online publication date: 18-Mar-2020
    • (2015)Efficient Computation of Algebraic Local Cohomology Classes and Change of Ordering for Zero-Dimensional Standard BasesProceedings of the 17th International Workshop on Computer Algebra in Scientific Computing - Volume 930110.1007/978-3-319-24021-3_25(334-348)Online publication date: 14-Sep-2015

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media