Abstract
A generalization of integral dependence relations in a ring of convergent power series is studied in the context of symbolic computation. Based on the theory of Grothendieck local duality on residues, an effective algorithm is introduced for computing generalized integral dependence relations. It is shown that, with the aid of local cohomology, generalized integral dependence relations in the ring of convergent power series can be computed in a polynomial ring. An extension of the proposed method to parametric cases is also discussed.
This work has been partly supported by JSPS Grant-in-Aid for Scientific Research (C) (18K03214 and 18K03320).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Becker, T., Weispfenning, V.: Gröbner Bases. Springer, New York (1993). https://doi.org/10.1007/978-1-4612-0913-3_6
Griffiths, P., Harris, J.: Principles of Algebraic Geometry. A Wiley-Interscience publication (1978)
Kapur, D., Sun, Y., Wang, D.: An efficient algorithm for computing a comprehensive Gröbner system of a parametric polynomial systems. J. Symb. Comput. 49, 27–44 (2013)
Kashiwara, M.: \(B\)-functions and holonomic systems. Rationality of roots of \(B\)-functions. Invent. Math. 38, 33–53 (1976–1977)
Nabeshima, K.: On the computation of parametric Gröbner bases for modules and syzygies. Jpn. J. Ind. Appl. Math. 27, 217–238 (2010)
Nabeshima, K.: Stability conditions of monomial bases and comprehensive Gröbner systems. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 248–259. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32973-9_21
Nabeshima, K., Tajima, S.: On efficient algorithms for computing parametric local cohomology classes associated with semi-quasihomogeneous singularities and standard bases. In: Proceedings of the ISSAC 2014, pp. 351–358. ACM (2014)
Nabeshima, K., Tajima, S.: Computing logarithmic vector fields associated with parametric semi-quasihomogeneous hypersurface isolated singularities. In: Proceedings of the ISSAC 2015, pp. 291–298. ACM (2015)
Nabeshima, K., Tajima, S.: Solving extended ideal membership problems in rings of convergent power series via Gröbner bases. In: Kotsireas, I.S., Rump, S.M., Yap, C.K. (eds.) MACIS 2015. LNCS, vol. 9582, pp. 252–267. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32859-1_22
Nabeshima, K., Tajima, S.: Computing Tjurina stratifications of \(\mu \)-constant deformations via parametric local cohomology systems. Appl. Algebra Eng. Commun. Comput. 27, 451–467 (2016)
Nabeshima, K., Tajima, S.: Algebraic local cohomology with parameters and parametric standard bases for zero-dimensional ideals. J. Symb. Comput. 82, 91–122 (2017)
Nabeshima, K., Tajima, S.: Solving parametric ideal membership problems and computing integral numbers in a ring of convergent power series via comprehensive Gröbner systems. Math. Comput. Sci. 13, 185–194 (2019)
Nabeshima, K., Tajima, S.: Testing zero-dimensionality of varieties at a point. To appear in Mathematics in Computer Science. arXiv:1903.12365 [cs.SC] (2019)
Noro, M., Takeshima, T.: Risa/Asir - a computer algebra system. In: Proceedings of the ISSAC 1992, pp. 387–396. ACM (1992). http://www.math.kobe-u.ac.jp/Asir/asir.html
Scherk, J.: On the Gauss-Manin connection of an isolated hypersurface singularity. Math. Ann. 238, 23–32 (1978)
Shibuta, F., Tajima, S.: An algorithm for computing the Hilbert-Samuel multiplicities and reductions of zero-dimensional ideal of Cohen-Macaulay local rings. J. Symb. Comput. 96, 108–121 (2020)
Swanson, I., Huneke, C.: Integral Closure of Ideals. Rings, and Modules. Cambridge University Press, Cambridge (2006)
Tajima, S.: On polar varieties, logarithmic vector fields and holonomic \(D\)-modules. RIMS Kôkyûroku Bessatsu 40, 41–51 (2013)
Tajima, S., Nakamura, Y.: Annihilating ideals for an algebraic local cohomology class. J. Symb. Comput. 44, 435–448 (2009)
Tajima, S., Nakamura, Y., Nabeshima, K.: Standard bases and algebraic local cohomology for zero dimensional ideals. Adv. Stud. Pure Math. 56, 341–361 (2009)
Vasconcelos, W.: Computational Methods in Commutative Algebra and Algebraic Geometry. Springer, Heidelberg (1998)
Yano, T.: On the theory of \(b\)-functions. Pub. Res. Inst. Math. Sci. 14, 111–202 (1978)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Nabeshima, K., Tajima, S. (2020). Generalized Integral Dependence Relations. In: Slamanig, D., Tsigaridas, E., Zafeirakopoulos, Z. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2019. Lecture Notes in Computer Science(), vol 11989. Springer, Cham. https://doi.org/10.1007/978-3-030-43120-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-43120-4_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-43119-8
Online ISBN: 978-3-030-43120-4
eBook Packages: Computer ScienceComputer Science (R0)