[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Generalized Integral Dependence Relations

  • Conference paper
  • First Online:
Mathematical Aspects of Computer and Information Sciences (MACIS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11989))

  • 443 Accesses

Abstract

A generalization of integral dependence relations in a ring of convergent power series is studied in the context of symbolic computation. Based on the theory of Grothendieck local duality on residues, an effective algorithm is introduced for computing generalized integral dependence relations. It is shown that, with the aid of local cohomology, generalized integral dependence relations in the ring of convergent power series can be computed in a polynomial ring. An extension of the proposed method to parametric cases is also discussed.

This work has been partly supported by JSPS Grant-in-Aid for Scientific Research (C) (18K03214 and 18K03320).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Becker, T., Weispfenning, V.: Gröbner Bases. Springer, New York (1993). https://doi.org/10.1007/978-1-4612-0913-3_6

    Book  MATH  Google Scholar 

  2. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. A Wiley-Interscience publication (1978)

    Google Scholar 

  3. Kapur, D., Sun, Y., Wang, D.: An efficient algorithm for computing a comprehensive Gröbner system of a parametric polynomial systems. J. Symb. Comput. 49, 27–44 (2013)

    Article  Google Scholar 

  4. Kashiwara, M.: \(B\)-functions and holonomic systems. Rationality of roots of \(B\)-functions. Invent. Math. 38, 33–53 (1976–1977)

    Google Scholar 

  5. Nabeshima, K.: On the computation of parametric Gröbner bases for modules and syzygies. Jpn. J. Ind. Appl. Math. 27, 217–238 (2010)

    Article  MathSciNet  Google Scholar 

  6. Nabeshima, K.: Stability conditions of monomial bases and comprehensive Gröbner systems. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 248–259. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32973-9_21

    Chapter  Google Scholar 

  7. Nabeshima, K., Tajima, S.: On efficient algorithms for computing parametric local cohomology classes associated with semi-quasihomogeneous singularities and standard bases. In: Proceedings of the ISSAC 2014, pp. 351–358. ACM (2014)

    Google Scholar 

  8. Nabeshima, K., Tajima, S.: Computing logarithmic vector fields associated with parametric semi-quasihomogeneous hypersurface isolated singularities. In: Proceedings of the ISSAC 2015, pp. 291–298. ACM (2015)

    Google Scholar 

  9. Nabeshima, K., Tajima, S.: Solving extended ideal membership problems in rings of convergent power series via Gröbner bases. In: Kotsireas, I.S., Rump, S.M., Yap, C.K. (eds.) MACIS 2015. LNCS, vol. 9582, pp. 252–267. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32859-1_22

    Chapter  MATH  Google Scholar 

  10. Nabeshima, K., Tajima, S.: Computing Tjurina stratifications of \(\mu \)-constant deformations via parametric local cohomology systems. Appl. Algebra Eng. Commun. Comput. 27, 451–467 (2016)

    Article  MathSciNet  Google Scholar 

  11. Nabeshima, K., Tajima, S.: Algebraic local cohomology with parameters and parametric standard bases for zero-dimensional ideals. J. Symb. Comput. 82, 91–122 (2017)

    Article  MathSciNet  Google Scholar 

  12. Nabeshima, K., Tajima, S.: Solving parametric ideal membership problems and computing integral numbers in a ring of convergent power series via comprehensive Gröbner systems. Math. Comput. Sci. 13, 185–194 (2019)

    Article  MathSciNet  Google Scholar 

  13. Nabeshima, K., Tajima, S.: Testing zero-dimensionality of varieties at a point. To appear in Mathematics in Computer Science. arXiv:1903.12365 [cs.SC] (2019)

  14. Noro, M., Takeshima, T.: Risa/Asir - a computer algebra system. In: Proceedings of the ISSAC 1992, pp. 387–396. ACM (1992). http://www.math.kobe-u.ac.jp/Asir/asir.html

  15. Scherk, J.: On the Gauss-Manin connection of an isolated hypersurface singularity. Math. Ann. 238, 23–32 (1978)

    Article  MathSciNet  Google Scholar 

  16. Shibuta, F., Tajima, S.: An algorithm for computing the Hilbert-Samuel multiplicities and reductions of zero-dimensional ideal of Cohen-Macaulay local rings. J. Symb. Comput. 96, 108–121 (2020)

    Article  MathSciNet  Google Scholar 

  17. Swanson, I., Huneke, C.: Integral Closure of Ideals. Rings, and Modules. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  18. Tajima, S.: On polar varieties, logarithmic vector fields and holonomic \(D\)-modules. RIMS Kôkyûroku Bessatsu 40, 41–51 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Tajima, S., Nakamura, Y.: Annihilating ideals for an algebraic local cohomology class. J. Symb. Comput. 44, 435–448 (2009)

    Article  MathSciNet  Google Scholar 

  20. Tajima, S., Nakamura, Y., Nabeshima, K.: Standard bases and algebraic local cohomology for zero dimensional ideals. Adv. Stud. Pure Math. 56, 341–361 (2009)

    Article  MathSciNet  Google Scholar 

  21. Vasconcelos, W.: Computational Methods in Commutative Algebra and Algebraic Geometry. Springer, Heidelberg (1998)

    Book  Google Scholar 

  22. Yano, T.: On the theory of \(b\)-functions. Pub. Res. Inst. Math. Sci. 14, 111–202 (1978)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsusuke Nabeshima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nabeshima, K., Tajima, S. (2020). Generalized Integral Dependence Relations. In: Slamanig, D., Tsigaridas, E., Zafeirakopoulos, Z. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2019. Lecture Notes in Computer Science(), vol 11989. Springer, Cham. https://doi.org/10.1007/978-3-030-43120-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43120-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43119-8

  • Online ISBN: 978-3-030-43120-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics