Abstract
The torsion module of Kähler differential forms is considered in the context of symbolic computation. Relations between logarithmic differential forms and logarithmic vector fields are investigated. As an application, an effective method is proposed for computing torsion differential forms associated with a hypersurface with an isolated singularity. The main ingredients of the proposed method are logarithmic vector fields and local cohomology.
Similar content being viewed by others
References
Aleksandrov, A.G.: On the de Rham complex of non-isolated singularities. Functional Analiz i ego Prologeniya 22, 59–60 (1988)
Aleksandrov, A.G.: Logarithmic differential forms, torsion differentials and residue. Complex Var. Appl. 50, 777–802 (2005)
Berger, R.: Differentialmoduln eindimensionaler localer Ringe. Math. Z. 81, 326–354 (1963)
Berger, R.: Report on the torsion of the differential module of an algebraic curve. In Algebraic Geometry and its Applications, pp. 285–303, Springer (1994)
Bourqui, D., Sebag, J.: On torsion Kähler differential forms. J. Pure Appl. Algebra 222, 2229–2242 (2018)
Buchweitz, R.-O., Greuel, G.-M.: The Milnor number and deformations of complex curve singularities. Invent. Math. 58, 241–281 (1980)
Carbonne, P.: Sur les différentielles de torsion. J. Algebra 202, 367–403 (1998)
Greb, D., Rollenske, S.: Torsion and cotorsion in the sheaf of Kähler differentials on some mild singularities. Math. Res. Lett. 18(1), 259–1269 (2011)
Greuel, G.-M.: Der Gauss–Manin–Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten. Math. Ann. 214, 2235–266 (1975)
Hefez, H., Hernandes, M.E.: Standard bases for local rings of branches and their modules of differentials. J. Symb. Comput. 42, 178–191 (2007)
Hübl, R.: A note on the torsion of differential forms. Arch. Math. 54, 142–145 (1990)
Kapur, D., Sun, D., Wang, D.: An efficient algorithm for computing a comprehensive Gröbner system of a parametric polynomial systems. J. Symb. Comput. 49, 27–44 (2013)
Kpognon, K.E.: Singularités des courbes planes, module des dérivations et schéma des arcs. Univ. de Rennes, Thèse de doctora (2014)
Lê, D.T.: Calcul du nombre de cycles évanouissants d’une hypersueface complexe. Ann. Inst. Fourier Grenoble 23, 261–270 (1973)
Michler, R.: Torsion of differentials of hypersurfaces with isolated singularities. J. Pure Appl. Algebra 104, 81–88 (1995)
Michler, R.: The dual of the torsion module of differentials. Commun. Algebra 30, 5639–5650 (2002)
Nabeshima, K.: Stability conditions of monomial bases and comprehensive Gröbner systems. In: Proc. CASC 2012, Lecture Notes in Computer Science, Vol. 7442, pp. 248–259, Springer (2012)
Nabeshima, K., Tajima, S.: Computing logarithmic vector fields associated with parametric semi-quasihomogeneous hypersurface isolated singularities, In: Proc of the International Symposium on Symbolic and Algebraic Computation, pp. 291–298, ACM, (2015)
Nabeshima, K., Tajima, S.: Efficient computation of algebraic local cohomology classes and change of ordering for zero-dimensinal standard bases. Lecture Notes Comput. Sci. 9301, 334–348 (2015)
Nabeshima, K., Tajima, S.: Computing Tjurina stratifications of \(\mu \)-constant deformations via parametric local cohomology systems. Appl. Algebra Eng. Comput. Comput. 27, 451–467 (2016)
Nabeshima, K., Tajima, S.: Solving extended ideal membership problems in rings of convergent power series via Gröbner bases, Lecture Notes in Computer Sciences Vol 9582, pp. 252–267, Springer (2016)
Nabeshima, K., Tajima, S.: Computing \( \mu ^{\ast } \) sequences of hypersurface isolated singularities via parametric local cohomology systems. Acta Math. Vietnamica 42, 279–288 (2017)
Nabeshima, K., Tajima, S.: Algebraic local cohomology with parameters and parametric standard bases for zero-dimensional ideals. J. Symb. Comput. 82, 91–122 (2017)
Nabeshima, K., Tajima, S.: Computation methods of logarithmic vector fields associated with semi-weighted homogeneous isolated hypersurface singularities. Tsukuba J. Math. 42, 191–231 (2018)
Nabeshima, K., Tajima, S.: A new method for computing the limiting tangent space of an isolated hypersurface singularity via algebraic local cohomology. Adv. Studies Pure Math. 78, 331–344 (2018)
Nabeshima, K., Tajima, S.: Computing logarithmic vector fields and Bruce-Roberts Milnor numbers via local cohomology classes, to appear in Proc. Australian-Japanese workshop on real and complex singularities (2017)
Nabeshima, K., Tajima, S.: Alternative algorithms for computing generic \(\mu ^{\ast }\)-sequences and local Euler obstructions of isolated hypersurface singularities. J Algebra Appl (2019). https://doi.org/10.1142/S0219498819501561
Nabeshima, K., Tajima, S.: Testing zero-dimensionality of varieties at a point, to appear in Mathematics in Computer Science. arXiv:1903.12365 [cs.SC]
Noro, M., Takeshima, T.: Risa/Asir- A computer algebra system. In: Proc. International Symposium on Symbolic and Algebraic Computation 1992, pp. 387–396, ACM, (1992) http://www.math.kobe-u.ac.jp/Asir/asir.html
Pol, D.: Singularités libres, formes et résidues logarithmiques, Thése de doctorat, l’Univ. d’Angers, France (2016)
Pohl, T.: Differential modules with maximal torsion. Arch. Math. 57, 438–445 (1991)
Saito, K.: Theory of logarithmic differential forms and logarithmic vector fields. J. Facut. Sci. Univ. Tokyo Sect. IA Math. 27, 265–291 (1980)
Sebag, J.: A remark on Berger’s conjecture, Kolchin’s theorem and arc schemes. Archiv der Math. 108, 145–150 (2017)
Tajima, S., Nakamura, Y.: Annihilating ideals for an algebraic local cohomology class. J. Symb. Comput. 44, 435–448 (2009)
Tajima, S., Nakamura, Y., Nabeshima, K.: Standard bases and algebraic local cohomology for zero dimensional ideals. Adv. Stud. Pure Math. 56, 341–361 (2009)
Tajima, S.: On polar varieties, logarithmic vector fields and holonomic D-modules. RIMS Kokyuroku Bessatsu 40, 41–51 (2013)
Tajima, S.: Parametric local cohomology classes and Tjurina stratifications for \( \mu \)-constant deformations of quasi-homogeneous singularities. In: Several Topics on Real and Complex Singularities, pp. 189–200, World Scientific (2014)
Tajima, S., Nabeshima, K.: An effective method for computing Grothendieck point residue mappings, submitted
Teissier, B.: Cycles évanescents, section planes et conditions de Whitney. Singularités à Cargèse, Astérisque. 7–8, 285–362 (1973)
Teissier, B.: Variétés polaires I. Invent. Math. 40, 267–292 (1977)
Zariski, O.: Characterization of plane algebroid curve whose module of differentials has maximum torsion. Proc. Nat. Acad. Sci. 56, 781–786 (1966)
Zariski, O.: Le problème des modules pour les branches planes. Hermann, Paris (1986)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work has been partly supported by Grant-in-Aid for Scientific Research (18K03320, 18K03214).
Rights and permissions
About this article
Cite this article
Tajima, S., Nabeshima, K. An Algorithm for Computing Torsion Differential Forms Associated with an Isolated Hypersurface Singularity. Math.Comput.Sci. 15, 353–367 (2021). https://doi.org/10.1007/s11786-020-00486-w
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11786-020-00486-w