[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An Algorithm for Computing Torsion Differential Forms Associated with an Isolated Hypersurface Singularity

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

The torsion module of Kähler differential forms is considered in the context of symbolic computation. Relations between logarithmic differential forms and logarithmic vector fields are investigated. As an application, an effective method is proposed for computing torsion differential forms associated with a hypersurface with an isolated singularity. The main ingredients of the proposed method are logarithmic vector fields and local cohomology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleksandrov, A.G.: On the de Rham complex of non-isolated singularities. Functional Analiz i ego Prologeniya 22, 59–60 (1988)

    MATH  Google Scholar 

  2. Aleksandrov, A.G.: Logarithmic differential forms, torsion differentials and residue. Complex Var. Appl. 50, 777–802 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Berger, R.: Differentialmoduln eindimensionaler localer Ringe. Math. Z. 81, 326–354 (1963)

    Article  MathSciNet  Google Scholar 

  4. Berger, R.: Report on the torsion of the differential module of an algebraic curve. In Algebraic Geometry and its Applications, pp. 285–303, Springer (1994)

  5. Bourqui, D., Sebag, J.: On torsion Kähler differential forms. J. Pure Appl. Algebra 222, 2229–2242 (2018)

    Article  MathSciNet  Google Scholar 

  6. Buchweitz, R.-O., Greuel, G.-M.: The Milnor number and deformations of complex curve singularities. Invent. Math. 58, 241–281 (1980)

    Article  MathSciNet  Google Scholar 

  7. Carbonne, P.: Sur les différentielles de torsion. J. Algebra 202, 367–403 (1998)

    Article  MathSciNet  Google Scholar 

  8. Greb, D., Rollenske, S.: Torsion and cotorsion in the sheaf of Kähler differentials on some mild singularities. Math. Res. Lett. 18(1), 259–1269 (2011)

    MATH  Google Scholar 

  9. Greuel, G.-M.: Der Gauss–Manin–Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten. Math. Ann. 214, 2235–266 (1975)

    Article  Google Scholar 

  10. Hefez, H., Hernandes, M.E.: Standard bases for local rings of branches and their modules of differentials. J. Symb. Comput. 42, 178–191 (2007)

    Article  MathSciNet  Google Scholar 

  11. Hübl, R.: A note on the torsion of differential forms. Arch. Math. 54, 142–145 (1990)

    Article  MathSciNet  Google Scholar 

  12. Kapur, D., Sun, D., Wang, D.: An efficient algorithm for computing a comprehensive Gröbner system of a parametric polynomial systems. J. Symb. Comput. 49, 27–44 (2013)

    Article  Google Scholar 

  13. Kpognon, K.E.: Singularités des courbes planes, module des dérivations et schéma des arcs. Univ. de Rennes, Thèse de doctora (2014)

    Google Scholar 

  14. Lê, D.T.: Calcul du nombre de cycles évanouissants d’une hypersueface complexe. Ann. Inst. Fourier Grenoble 23, 261–270 (1973)

    Article  MathSciNet  Google Scholar 

  15. Michler, R.: Torsion of differentials of hypersurfaces with isolated singularities. J. Pure Appl. Algebra 104, 81–88 (1995)

    Article  MathSciNet  Google Scholar 

  16. Michler, R.: The dual of the torsion module of differentials. Commun. Algebra 30, 5639–5650 (2002)

    Article  MathSciNet  Google Scholar 

  17. Nabeshima, K.: Stability conditions of monomial bases and comprehensive Gröbner systems. In: Proc. CASC 2012, Lecture Notes in Computer Science, Vol. 7442, pp. 248–259, Springer (2012)

  18. Nabeshima, K., Tajima, S.: Computing logarithmic vector fields associated with parametric semi-quasihomogeneous hypersurface isolated singularities, In: Proc of the International Symposium on Symbolic and Algebraic Computation, pp. 291–298, ACM, (2015)

  19. Nabeshima, K., Tajima, S.: Efficient computation of algebraic local cohomology classes and change of ordering for zero-dimensinal standard bases. Lecture Notes Comput. Sci. 9301, 334–348 (2015)

    Article  Google Scholar 

  20. Nabeshima, K., Tajima, S.: Computing Tjurina stratifications of \(\mu \)-constant deformations via parametric local cohomology systems. Appl. Algebra Eng. Comput. Comput. 27, 451–467 (2016)

    Article  MathSciNet  Google Scholar 

  21. Nabeshima, K., Tajima, S.: Solving extended ideal membership problems in rings of convergent power series via Gröbner bases, Lecture Notes in Computer Sciences Vol 9582, pp. 252–267, Springer (2016)

  22. Nabeshima, K., Tajima, S.: Computing \( \mu ^{\ast } \) sequences of hypersurface isolated singularities via parametric local cohomology systems. Acta Math. Vietnamica 42, 279–288 (2017)

    Article  MathSciNet  Google Scholar 

  23. Nabeshima, K., Tajima, S.: Algebraic local cohomology with parameters and parametric standard bases for zero-dimensional ideals. J. Symb. Comput. 82, 91–122 (2017)

    Article  MathSciNet  Google Scholar 

  24. Nabeshima, K., Tajima, S.: Computation methods of logarithmic vector fields associated with semi-weighted homogeneous isolated hypersurface singularities. Tsukuba J. Math. 42, 191–231 (2018)

    Article  MathSciNet  Google Scholar 

  25. Nabeshima, K., Tajima, S.: A new method for computing the limiting tangent space of an isolated hypersurface singularity via algebraic local cohomology. Adv. Studies Pure Math. 78, 331–344 (2018)

    Article  MathSciNet  Google Scholar 

  26. Nabeshima, K., Tajima, S.: Computing logarithmic vector fields and Bruce-Roberts Milnor numbers via local cohomology classes, to appear in Proc. Australian-Japanese workshop on real and complex singularities (2017)

  27. Nabeshima, K., Tajima, S.: Alternative algorithms for computing generic \(\mu ^{\ast }\)-sequences and local Euler obstructions of isolated hypersurface singularities. J Algebra Appl (2019). https://doi.org/10.1142/S0219498819501561

    Article  MathSciNet  MATH  Google Scholar 

  28. Nabeshima, K., Tajima, S.: Testing zero-dimensionality of varieties at a point, to appear in Mathematics in Computer Science. arXiv:1903.12365 [cs.SC]

  29. Noro, M., Takeshima, T.: Risa/Asir- A computer algebra system. In: Proc. International Symposium on Symbolic and Algebraic Computation 1992, pp. 387–396, ACM, (1992) http://www.math.kobe-u.ac.jp/Asir/asir.html

  30. Pol, D.: Singularités libres, formes et résidues logarithmiques, Thése de doctorat, l’Univ. d’Angers, France (2016)

  31. Pohl, T.: Differential modules with maximal torsion. Arch. Math. 57, 438–445 (1991)

    Article  MathSciNet  Google Scholar 

  32. Saito, K.: Theory of logarithmic differential forms and logarithmic vector fields. J. Facut. Sci. Univ. Tokyo Sect. IA Math. 27, 265–291 (1980)

    MathSciNet  MATH  Google Scholar 

  33. Sebag, J.: A remark on Berger’s conjecture, Kolchin’s theorem and arc schemes. Archiv der Math. 108, 145–150 (2017)

    Article  MathSciNet  Google Scholar 

  34. Tajima, S., Nakamura, Y.: Annihilating ideals for an algebraic local cohomology class. J. Symb. Comput. 44, 435–448 (2009)

    Article  MathSciNet  Google Scholar 

  35. Tajima, S., Nakamura, Y., Nabeshima, K.: Standard bases and algebraic local cohomology for zero dimensional ideals. Adv. Stud. Pure Math. 56, 341–361 (2009)

    Article  MathSciNet  Google Scholar 

  36. Tajima, S.: On polar varieties, logarithmic vector fields and holonomic D-modules. RIMS Kokyuroku Bessatsu 40, 41–51 (2013)

    MathSciNet  MATH  Google Scholar 

  37. Tajima, S.: Parametric local cohomology classes and Tjurina stratifications for \( \mu \)-constant deformations of quasi-homogeneous singularities. In: Several Topics on Real and Complex Singularities, pp. 189–200, World Scientific (2014)

  38. Tajima, S., Nabeshima, K.: An effective method for computing Grothendieck point residue mappings, submitted

  39. Teissier, B.: Cycles évanescents, section planes et conditions de Whitney. Singularités à Cargèse, Astérisque. 7–8, 285–362 (1973)

    MATH  Google Scholar 

  40. Teissier, B.: Variétés polaires I. Invent. Math. 40, 267–292 (1977)

    Article  MathSciNet  Google Scholar 

  41. Zariski, O.: Characterization of plane algebroid curve whose module of differentials has maximum torsion. Proc. Nat. Acad. Sci. 56, 781–786 (1966)

    Article  MathSciNet  Google Scholar 

  42. Zariski, O.: Le problème des modules pour les branches planes. Hermann, Paris (1986)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsusuke Nabeshima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been partly supported by Grant-in-Aid for Scientific Research (18K03320, 18K03214).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tajima, S., Nabeshima, K. An Algorithm for Computing Torsion Differential Forms Associated with an Isolated Hypersurface Singularity. Math.Comput.Sci. 15, 353–367 (2021). https://doi.org/10.1007/s11786-020-00486-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-020-00486-w

Keywords

Mathematics Subject Classification

Navigation