[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Interactive Material Design Using Model Reduction

Published: 02 March 2015 Publication History

Abstract

We demonstrate an interactive method to create heterogeneous continuous deformable materials on complex three-dimensional meshes. The user specifies displacements and internal elastic forces at a chosen set of mesh vertices. Our system then rapidly solves an optimization problem to compute a corresponding heterogeneous spatial distribution of material properties using the Finite Element Method (FEM) analysis. We apply our method to linear and nonlinear isotropic deformable materials. We demonstrate that solving the problem interactively in the full-dimensional space of individual tetrahedron material values is not practical. Instead, we propose a new model reduction method that projects the material space to a low-dimensional space of material modes. Our model reduction accelerates optimization by two orders of magnitude and makes the convergence much more robust, making it possible to interactively design material distributions on complex meshes. We apply our method to precise control of contact forces and control of pressure over large contact areas between rigid and deformable objects for ergonomics. Our tetrahedron-based dithering method can efficiently convert continuous material distributions into discrete ones and we demonstrate its precision via FEM simulation. We physically display our distributions using haptics, as well as demonstrate how haptics can aid in the material design. The produced heterogeneous material distributions can also be used in computer animation applications.

Supplementary Material

JPG File (a18.jpg)
xu (xu.zip)
Supplemental movie, appendix, image and software files for, Interactive Material Design Using Model Reduction
MP4 File (a18.mp4)

References

[1]
S. S. An, T. Kim, and D. L. James. 2008. Optimizing cubature for efficient integration of subspace deformations. ACM Trans. Graph. 27, 5, 165:1--165:10.
[2]
J. Barbic and D. L. James. 2005. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Trans. Graph. 24, 3, 982--990.
[3]
J. Barbic, F. Sin, and E. Grinspun. 2012. Interactive editing of de-formable simulations. ACM Trans. Graph. 31, 4, 70:1--70:8.
[4]
M. Becker and M. Teschner. 2007. Robust and efficient estimation of elasticity parameters using the linear finite element method. In Proceedings of the Conference on Simulation and Visualization (SimVis'07). 15--28.
[5]
B. Bickel, M. Bacher, M. A. Otaduy, H. R. Lee, H. Pfister, M. Gross, and W. Matusik. 2010. Design and fabrication of materials with desired deformation behavior. ACM Trans. Graph. 29, 4, 63:1--63:10.
[6]
B. Bickel, M. Baecher, M. Otaduy, W. Matusik, H. Pfister, and M. Gross. 2009. Capture and modeling of non-linear heterogeneous soft tissue. ACM Trans. Graph. 28, 3, 89:1--89:9.
[7]
J. Bonet and R. D. Wood. 2008. Nonlinear Continuum Mechanics for Finite Element Analysis. 2nd Ed. Cambridge University Press.
[8]
M. Botsch, M. Pauly, M. Wicke, and M. Gross. 2007. Adaptive space deformations based on rigid cells. Comput. Graph. Forum 26, 3, 339--347.
[9]
M. Botsch and O. Sorkine. 2008. On linear variational surface deformation methods. IEEE Trans. Vis. Comput. Graph. 14, 1, 213--230.
[10]
M. Bro-Nielsen and S. Cotin. 1996. Real-time volumetric deformable models for surgery simulation using finite elements and condensation. Comput. Graph. Forum 15, 3, 57--66.
[11]
W. Cho, E. M. Sachs, N. M. Patrikalakis, and D. E. Troxel. 2003. A dithering algorithm for local composition control with three-dimensional printing. Comput.-Aid. Des. 35, 9, 851--867.
[12]
S. Cotin, H. Delingette, and N. Ayache. 1999. Realtime elastic deformations of soft tissues for surgery simulation. IEEE Trans. Vis. Comput. Graph. 5, 1, 62--73.
[13]
R. Floyd and L. Steinberg. 1976. An adaptive algorithm for spatial gray scale. Proc. Soc. Inf. Display 17, 2, 75--77.
[14]
Z. Gao, T. Kim, D. L. James, and J. P. Desai. 2009. Semi-automated soft-tissue acquisition and modeling for surgical simulation. In Proceedings of the 5th Annual IEEE International Conference on Automation Science and Engineering (CASE'09). 268--273.
[15]
P. E. Gill, W. Murray, Michael, and M. A. Saunders. 1997. SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12, 979--1006.
[16]
L.-H. Han, S. Suri, C. E. Schmidt, and S. Chen. 2010. Fabrication of three-dimensional scaffolds for heterogeneous tissue engineering. Biomed. Microdev. 12, 4, 721--725.
[17]
K. K. Hauser, C. Shen, and J. F. O'Brien. 2003. Interactive deformation using modal analysis with constraints. In Proceedings of the Conference on Graphics Interface (GI'03). 247--256.
[18]
K. Hildebrandt, C. Schulz, C. V. Tycowicz, and K. Polthier. 2011. Interactive surface modeling using modal analysis. ACM Trans. Graph. 30, 5.
[19]
K. Hildebrandt, C. Schulz, C. Von Ycowicz, and K. Polthier. 2012. Interactive spacetime control of deformable objects. ACM Trans. Graph. 31, 4, 71:1--71:8.
[20]
P. Huang, D. Deng, and Y. Chen. 2013. Modeling and fabrication of heterogeneous three-dimensional objects based on additive manufacturing. In Proceedings of the International Mechanical Engineering Congress and Exposition (ASME'13).
[21]
Q. Huang, M. Wicke, B. Adams, and L. Guibas. 2009. Shape decomposition using modal analysis. Comput. Graph. Forum 28, 2, 407--416.
[22]
T. Igarashi, T. Moscovich, and J. F. Hughes. 2005. As-rigid-as-possible shape manipulation. ACM Trans. Graph. 24, 3, 1134--1141.
[23]
A. Jacobson, I. Baran, L. Kavan, J. Popovic, and O. Sorkine. 2012a. Fast automatic skinning transformations. ACM Trans. Graph. 31, 4, 77:1--77:10.
[24]
A. Jacobson, T. Weinkauf, and O. Sorkine. 2012b. Smooth shape-aware functions with controlled extrema. Comput. Graph. Forum 31, 5, 1577--1586.
[25]
D. L. James and D. K. Pai. 2001. A unified treatment of elastostatic contact simulation for real time haptics. Haptics-e Electron. J. Haptics Res. 2, 1.
[26]
D. L. James and D. K. Pai. 2002. DyRT: Dynamic response textures for real time deformation simulation with graphics hardware. ACM Trans. Graph. 21, 3, 582--585.
[27]
J. Kajberg and G. Lindkvist. 2004. Characterisation of materials subjected to large strains by inverse modelling based on in-plane displacement fields. Int. J. Solids Struct. 41, 13, 3439--3459.
[28]
M. Kauer, V. Vuskovic, J. Dual, G. Szekely, and M. Bajka. 2002. Inverse finite element characterization of soft tissues. Med. Image Anal. 6, 3, 275--287.
[29]
S. Khalil, J. Nam, and W. Sun. 2005. Multi-nozzle deposition for construction of 3d biopolymer tissue scaffolds. Rapid Prototyp. J. 11, 1, 9--17.
[30]
L. Kharevych, P. Mullen, H. Owhadi, and M. Desbrun. 2009. Numerical coarsening of inhomogeneous elastic materials. ACM Trans. Graph. 28, 3, 51:1--51:8.
[31]
T. Kim and D. James. 2009. Skipping steps in deformable simulation with online model reduction. ACM Trans. Graph. Asia 28, 5, 123:1--123:9.
[32]
X. Kou, S. Tan, and W. Sze. 2006. Modeling complex heterogeneous objects with non-manifold heterogeneous cells. Comput.-Aid. Des. 38, 5, 457--474.
[33]
J. Lang, D. K. Pai, and R. J. Woodham. 2002. Acquisition of elastic models for interactive simulation. Int. J. Robot. Res. 21, 8, 713--733.
[34]
H.-P. Lee and M. Lin. 2012. Fast optimization-based elasticity parameter estimation using reduced models. Vis. Comput. 28, 6--8, 553--562.
[35]
B. Levy and H. R. Zhang. 2010. Spectral mesh processing. In Proceedings of the ACM SIGGRAPH Courses (SIGGRAPH'10). ACM Press, New York, 8:1--8:312.
[36]
S. Li, J. Huang, F. De Goes, X. Jin, H. Bao, and M. Desbrun. 2014. Space-time editing of elastic motion through material optimization and reduction. ACM Trans. Graph. 33, 4, 108:1--108:10.
[37]
C. L. Liew, K. F. Leong, C. K. Chua, and Z. Du. 2002. Dual material rapid prototyping techniques for the development of biomedical devices. Part 2: Secondary powder deposition. Int. J. Adv. Manufact. Technol. 19, 9, 679--687.
[38]
H. Liu, T. Maekawa, N. Patrikalakis, E. Sachs, and W. Cho. 2004. Methods for feature-based design of heterogeneous solids. Comput.-Aid. Des. 36, 12, 1141--1159.
[39]
S. Martin, B. Thomaszewski, E. Grinspun, and M. Gross. 2011. Example-based elastic materials. ACM Trans. Graph. 30, 4.
[40]
Y. Mori and T. Igarashi. 2007. Plushie: An interactive design system for plush toys. ACM Trans. Graph. 26, 3.
[41]
M. Muller and M. Gross. 2004. Interactive virtual materials. In Proceedings of the Conference on Graphics Interface (GI'04). 239--246.
[42]
A. Nealen, M. Muller, R. Keiser, E. Boxerman, and M. Carlson. 2006. Physically based deformable models in computer graphics. Comput. Graph. Forum 25, 4, 809--836.
[43]
M. Nesme, P. G. Kry, L. Jerabkova, and F. Faure. 2009. Pre-serving topology and elasticity for embedded deformable models. ACM Trans. Graph. 28, 3, 52:1--52:9.
[44]
D. K. Pai, K. V. D. Doel, D. L. James, J. Lang, J. E. Lloyd, J. L. Richmond, and S. H. Yau. 2001. Scanning physical interaction behavior of 3D objects. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'01). 87--96.
[45]
W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. 2007. Numerical Recipes: The Art of Scientific Computing. 3rd Ed. Cambridge University Press, Cambridge, UK.
[46]
D. Schnur and N. Zabaras. 1992. An inverse method for determining elastic material properties and a material interface. Int. J. Numer. Methods Engin. 33, 10, 2039--2057.
[47]
J. L. Schoner, J. Lang, and H.-P. Seidel. 2004. Measurement-based interactive simulation of viscoelastic solids. Comput. Graph. Forum. 23, 3, 547--556.
[48]
C. Schumacher, B. Thomaszewski, S. Coros, S. Martin, R. Sumner, and M. Gross. 2012. Efficient simulation of example-based materials. In Proceedings of the Symposium on Computer Animation (SCA'12). 1--8.
[49]
A. A. Shabana. 1990. Theory of Vibration, Volume II: Discrete and Continuous Systems. Springer.
[50]
E. Sifakis and J. Barbic. 2012. FEM simulation of 3d deformable solids: A practitioner's guide to theory, discretization and model reduction. In ACM SIGGRAPH Courses (SIGGRAPH'12).
[51]
E. Sifakis, I. Neverov, and R. Fedkiw. 2005. Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Trans. Graph. 24, 3, 417--425.
[52]
M. Skouras, B. Thomaszewski, B. Bickel, and M. Gross. 2012. Computational design of rubber balloons. Comput. Graph. Forum 31, 2.4, 835--844.
[53]
M. Skouras, B. Thomaszewski, S. Coros, B. Bickel, and M. Gross. 2013. Computational design of actuated deformable characters. ACM Trans. Graph. 32, 4, 82:1--82:10.
[54]
K. Vidimce, S.-P. Wang, J. Ragan-Elley, and W. Matusik. 2013. Openfab: A programmable pipeline for multi-material fabrication. ACM Trans. Graph. 32, 4, 136:1--136:12.
[55]
H. Wang, J. F. O'Brien, and R. Ramamoorthi. 2011. Data-driven elastic models for cloth: Modeling and measurement. ACM Trans. Graph. 30, 4.
[56]
M. Wicke, M. Stanton, and A. Treuille. 2009. Modular bases for fluid dynamics. ACM Trans. Graph. 28, 3, 39:1--39:8.
[57]
K. Yin and D. K. Pai. 2003. Footsee: An interactive animation system. In Proceedings of the Symposium on Computer Animation (SCA'03). 329--338.
[58]
H. Zhang. 2004. Discrete combinatorial laplacian operators for digital geometry processing. In Proceedings of the SIAM Conference on Geometric Design and Computing (SIAG-GD'04). Nashboro Press, 575--592.
[59]
H. Zhang, O. Van Aick, and R. Dyer. 2010. Spectral mesh processing. Comput. Graph. Forum 29, 6, 1865--1894.
[60]
C. Zhou, Y. Chen, Z. Yang, and B. Khoshnevis. 2013. Digital material fabrication using mask-image-projection-based stereolithography. Rapid Prototyp. J. 19, 3, 153--165.

Cited By

View all
  • (2024)Multi‐granularity feature enhancement network for maritime ship detectionCAAI Transactions on Intelligence Technology10.1049/cit2.12310Online publication date: 12-Mar-2024
  • (2024)Optimizing heterogeneous elastic material distributions on 3D modelsComputer-Aided Design10.1016/j.cad.2024.103748175:COnline publication date: 1-Oct-2024
  • (2023)Computational Design of Flexible Planar MicrostructuresACM Transactions on Graphics10.1145/361839642:6(1-16)Online publication date: 5-Dec-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 34, Issue 2
February 2015
136 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2742222
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 02 March 2015
Accepted: 01 November 2014
Revised: 01 September 2014
Received: 01 April 2014
Published in TOG Volume 34, Issue 2

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. FEM
  2. Material design
  3. design
  4. interactive
  5. materials
  6. model reduction

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • Sloan Foundation
  • USC Annenberg Graduate Fellowship
  • National Science Foundation
  • Intel Corporation

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)70
  • Downloads (Last 6 weeks)8
Reflects downloads up to 24 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Multi‐granularity feature enhancement network for maritime ship detectionCAAI Transactions on Intelligence Technology10.1049/cit2.12310Online publication date: 12-Mar-2024
  • (2024)Optimizing heterogeneous elastic material distributions on 3D modelsComputer-Aided Design10.1016/j.cad.2024.103748175:COnline publication date: 1-Oct-2024
  • (2023)Computational Design of Flexible Planar MicrostructuresACM Transactions on Graphics10.1145/361839642:6(1-16)Online publication date: 5-Dec-2023
  • (2023)Numerical Coarsening with Neural Shape FunctionsComputer Graphics Forum10.1111/cgf.1473642:6Online publication date: 17-Mar-2023
  • (2023)Large‐Scale Worst‐Case Topology OptimizationComputer Graphics Forum10.1111/cgf.1469841:7(529-540)Online publication date: 20-Mar-2023
  • (2023)ESBD: Exponential Strain-based Dynamics using XPBD algorithmComputers & Graphics10.1016/j.cag.2023.09.014116(500-512)Online publication date: Nov-2023
  • (2023)Estimation of fused-filament-fabrication structural vibro-acoustic performance by modal impact soundComputers & Graphics10.1016/j.cag.2023.07.010115(137-147)Online publication date: Oct-2023
  • (2022)L2C: Combining Lossy and Lossless Compression on Memory and I/OACM Transactions on Embedded Computing Systems10.1145/348164121:1(1-27)Online publication date: 14-Jan-2022
  • (2022)Differentiable Depth for Real2Sim Calibration of Soft Body SimulationsComputer Graphics Forum10.1111/cgf.1472042:1(277-289)Online publication date: 23-Nov-2022
  • (2022)Visual Vibration Tomography: Estimating Interior Material Properties from Monocular Video2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52688.2022.01575(16210-16219)Online publication date: Jun-2022
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media