[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Optical transmission of nematic liquid crystal 5CB doped by single-walled and multi-walled carbon nanotubes

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Comparative studies of optical transmission of single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), dispersed in nematic liquid crystal matrix 5CB, were carried out. The data evidence violations of Beer-Lambert-Bouguer (BLB) law both in cell thickness and concentration dependencies. The most striking is the fact that optical transmission dependencies for SWCNTs and MWCNTs were quite different in the nematic phase, but they were practically indistinguishable in the isotropic phase. Monte Carlo simulations of the impact of aggregation on direct transmission and violation of BLB law were also done. The results were discussed accounting for the tortuous shape of CNTs, their physical properties and aggregation, as well as strong impact of perturbations of the nematic 5CB structure inside coils and in the vicinity of CNT aggregates.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. I. Dierking, G. Scalia, P. Morales, D. Leclere, Adv. Mater. 16, 865 (2004)

    Article  Google Scholar 

  2. M. Rahman, W. Lee, J. Phys. D: Appl. Phys. 42, 063001 (2009)

    Article  ADS  Google Scholar 

  3. K. Sigdel, G. Iannacchione, Eur. Phys. J. E 34, 1 (2011)

    Article  Google Scholar 

  4. O. Stamatoiu, J. Mirzaei, X. Feng, T. Hegmann, Top. Curr. Chem. 318, 331 (2012)

    Article  Google Scholar 

  5. J. Lagerwall, G. Scalia, Curr. Appl. Phys. 12, 1387 (2012)

    Article  ADS  Google Scholar 

  6. Scalia, Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications (John Wiley & Sons, 2012), Chapt. Liquid Crystals of Carbon Nanotubes and Carbon Nanotubes in Liquid Crystals, pp. 341--377

  7. M. Yakemseva, I. Dierking, N. Kapernaum, N. Usoltseva, F. Giesselmann, Eur. Phys. J. E 37, 7 (2014)

    Article  Google Scholar 

  8. L. Lisetski, N. Lebovka, S. Naydenov, M. Soskin, J. Mol. Liq. 164, 143 (2011)

    Article  Google Scholar 

  9. Y. Ji, Y. Huang, E. Terentjev, Langmuir 27, 13254 (2011)

    Article  Google Scholar 

  10. M. Kuhnast, C. Tschierske, J. Lagerwall, Chem. Commun. 46, 6989 (2010)

    Article  Google Scholar 

  11. N. Lebovka, L. Lisetski, M. Nesterenko, V. Panikarskaya, N. Kasian, S. Minenko, M. Soskin, Liq. Cryst. 40, 968 (2013)

    Article  Google Scholar 

  12. A. Goncharuk, N. Lebovka, L. Lisetski, S. Minenko, J. Phys. D: Appl. Phys. 42, 165411 (2009)

    Article  ADS  Google Scholar 

  13. L. Lisetski, S. Minenko, A. Fedoryako, N. Lebovka, Physica E 41, 431 (2009)

    Article  ADS  Google Scholar 

  14. I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, R. Yamaguchi, Opt. Express 20, 3499 (2012)

    Article  ADS  Google Scholar 

  15. O. Yaroshchuk, S. Tomylko, I. Gvozdovskyy, R. Yamaguchi, Appl. Opt. 52, E53 (2013)

    Article  ADS  Google Scholar 

  16. R. Basu, G.S. Iannacchione, Appl. Phys. Lett. 95, 173113 (2009)

    Article  ADS  Google Scholar 

  17. A.G. Fuh, W. Lee, K.C. Huang, Liq. Cryst. 40, 745 (2013)

    Article  Google Scholar 

  18. B.R. Jian, C.Y. Tang, W. Lee, Carbon 49, 910 (2011)

    Article  Google Scholar 

  19. F.C. Lin, P.C. Wu, B.R. Jian, W. Lee, Adv. Condens. Matter Phys. 2013, 271574 (2013)

    Google Scholar 

  20. O. Trushkevych, F. Golden, M. Pivnenko, H. Xu, N. Collings, W. Crossland, S. Muller, R. Jakoby, Electron. Lett. 46, 693 (2010)

    Article  Google Scholar 

  21. C. Cirtoaje, E. Petrescu, C. Motoc, Physica E 54, 242 (2013)

    Article  ADS  Google Scholar 

  22. S. Prasad, M. Kumar, C. Yelamaggad, Carbon 59, 512 (2013)

    Article  Google Scholar 

  23. D.A. Dunmur, M.R. Manterfield, W.H. Miller, J.K. Dunleavy, Mol. Crys. Liq. Cryst. 45, 127 (1978)

    Article  Google Scholar 

  24. M. Gu, Y. Yin, S.V. Shiyanovskii, O.D. Lavrentovich, Phys. Rev. E 76, 061702 (2007)

    Article  ADS  Google Scholar 

  25. C. Laurent, E. Flahaut, A. Peigney, Carbon 48, 2994 (2010)

    Article  Google Scholar 

  26. L. Lysetskiy, V. Panikarskaya, O. Sidletskiy, N. Kasian, S. Kositsyn, P. Shtifanyuk, N. Lebovka, M. Lisunova, O. Melezhyk, Mol. Cryst. Liq. Cryst. 478, 127 (2007)

    Article  Google Scholar 

  27. L. Lisetski, N. Lebovka, O. Sidletskiy, V. Panikarskaya, N. Kasian, S. Kositsyn, M. Lisunova, O. Melezhyk, Funct. Mater. 14, 233 (2007)

    Google Scholar 

  28. T. Uchida, H. Seki, Liquid Crystals: Applications and Uses Vol. 3 (World Scientific, Singapore, 1990) Chapt. Surface Alignment of Liquid Crystals, pp. 21--25

  29. H.S. Lee, Nanotechnology and Nanomaterials ``Syntheses and Applications of Carbon Nanotubes and Their Composites'' (InTech - Open Access Company, 2013) Chapt. Classification of Mass-Produced Carbon Nanotubes and Their Physico-Chemical Properties, pp. 39--53

  30. H.S. Lee, C.H. Yun, S.K. Kim, J.H. Choi, C.J. Lee, H.J. Jin, H. Lee, S.J. Park, M. Park, Appl. Phys. Lett. 95, 134104 (2009)

    Article  ADS  Google Scholar 

  31. U.O. Köylü, G.M. Faeth, T.L. Farias, M.G. Carvalho, Combust. Flame 100, 621 (1995)

    Article  Google Scholar 

  32. A.M. Brasil, T.L. Farias, M.G. Carvalho, J. Aerosol Sci. 30, 1379 (1999)

    Article  Google Scholar 

  33. J.D.J. Ingle, S.R. Crouch, Spectrochemical Analysis (Prentice Hall, New Jersey, 1988)

  34. K. Kamaras, A. Pekker, M. Bruckner, F. Borondics, A.G. Rinzler, D.B. Tanner, M.E. Itkis, R.C. Haddon, Y. Tan, D.E. Resasco, Phys. Status Solidi B 245, 2229 (2008)

    Article  ADS  Google Scholar 

  35. C.M. Weber, D.M. Eisele, J.P. Rabe, Y. Liang, X. Feng, L. Zhi, K. Mullen, J.L. Lyon, R. Williams, D.A.V. Bout et al., Small 6, 184 (2010)

    Article  Google Scholar 

  36. A. Pekker, F. Borondics, K. Kamarás, A.G. Rinzler, D.B. Tanner, Phys. Status Solidi B 243, 3485 (2006)

    Article  ADS  Google Scholar 

  37. V. Ponevchinsky, A.I. Goncharuk, V.I. Vasil'ev, N.I. Lebovka, M.S. Soskin, Proc. SPIE 7613, 761306 (2010)

    Article  Google Scholar 

  38. J.N. Israelachvili, Intermolecular and Surface Forces (Academic Press, 1992)

  39. A. Davis, A. Marshak, Fractal Frontiers (World Scientific, Singapore, 1997), Chapt. Lévy kinematics in slab geometry: scaling of transmission probability, pp. 63--72

  40. M.L. Larsen, A.S. Clark, J. Quantum Spectrosc. Radiat. Transfer 133, 646 (2014)

    Article  ADS  Google Scholar 

  41. R. Shaw, A. Kostinski, D. Lanterman, J. Quantum Spectrosc. Radiat. Transfer 75, 13 (2002)

    Article  ADS  Google Scholar 

  42. H. Stark, Phys. Rep. 351, 387 (2001)

    Article  ADS  Google Scholar 

  43. B. Lev, S. Chernyshuk, P. Tomchuk, H. Yokoyama, Phys. Rev. E. 65, 021709 (2002)

    Article  ADS  Google Scholar 

  44. M. Tasinkevych, F. Mondiot, O. Mondain-Monval, J.C. Loudet, Soft Matter 10, 2047 (2014)

    Article  ADS  Google Scholar 

  45. R.W. Ruhwandl, E.M. Terentjev, Phys. Rev. E 55, 2958 (1997)

    Article  ADS  Google Scholar 

  46. T. Araki, H. Tanaka, Phys. Rev. Lett. 97, 127801 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Lebovka.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lisetski, L.N., Fedoryako, A.P., Samoilov, A.N. et al. Optical transmission of nematic liquid crystal 5CB doped by single-walled and multi-walled carbon nanotubes. Eur. Phys. J. E 37, 68 (2014). https://doi.org/10.1140/epje/i2014-14068-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14068-3

Keywords

Navigation