Abstract.
Flexoelectric coefficients of carbon nanotube (CNT) doped nematic liquid crystals (NLCs) are studied based on the Helfrich theory. Weak and hard anchoring conditions between the NLC molecules and CNTs are considered. The volume fraction of the CNTs in nematic host is assumed to be low, which makes nanotubes aggregation phenomena negligible. Also, the length of doped CNTs is assumed to be lower than 10μm, so these rigid rods with low concentration cannot possess any flexoelectric polarization by themselves, only their presence modifies the flexoelectric coefficients of the NLC system. The Landau-de Gennes theory is used to calculate the order parameter changes in the medium. Also, the numerical density definition is renewed in the presence of nanotubes. It is shown that in the nematic phase the flexoelectric coefficients increase along with the increase of the coupling strength and temperature. The enhancement in flexoelectric coefficients is more significant in hard anchoring conditions than in the weak anchoring case. The flexoelectric coefficients increase up to 5-fold is calculated near the phase transition temperature, which is in good accordance with the experimental reported data.
Graphical abstract
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
G.J. Sprokel, The Physics and Chemistry of Liquid Crystal Devices (Springer Science & Business Media, 2013)
D.K. Yang, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, 2014)
T. Kato, J. Uchida, T. Ichikawa, T. Sakamoto, Angew. Chem. Int. Ed. 57, 4355 (2018)
Q. Li, Nanoscience with Liquid Crystals (Springer International PU, 2016)
R.K. Khan, S. Turlapati, N.V.S. Rao, S. Ghosh, Eur. Phys. J. E 40, 75 (2017)
M. Emdadi, J.B. Poursamad, M. Sahrai, F. Moghaddas, Mol. Phys. 116, 1650 (2018)
P. Van Der Schoot, V. Popa-Nita, S. Kralj, J. Phys. Chem. B 112, 4512 (2008)
V. Popa-Nita, S. Kralj, J. Chem. Phys. 132, 024902 (2010)
V. Popa-Nita, M. Cevko, S. Kralj, Liquid Crystal-Anisotropic Nanoparticles Mixtures, edited by J.M. Marulanda, Electronic Properties of Carbon Nanotubes (InTech Press, 2011) pp. 645--664
V. Popa-Nita, J. Chem. Phys. 143, 094901 (2015)
M. Yakemseva, I. Dierking, N. Kapernaum, N. Usoltseva, F. Giesselmann, Eur. Phys. J. E 37, 7 (2014)
K.P. Sigdel, G.S. Iannacchione, Eur. Phys. J. E 34, 34 (2011)
E. Petrescu, C. Cirtoaje, Beilstein J. Nanotechnol. 9, 233 (2018)
W. Lee, C.Y. Wang, Y.C. Shih, Appl. Phys. Lett. 85, 513 (2004)
Y.J. Lim, S.S. Bhattacharyya, W. Tie, H.R. Park, Y.H. Lee, S.H. Lee, Liq. Cryst. 40, 1202 (2013)
R. Basu, G.S. Iannacchione, J. Appl. Phys. 106, 124312 (2009)
O. Köysal, Synth. Met. 160, 1097 (2010)
A.Y.G. Fuh, W. Lee, K.Y.C. Huang, Liq. Cryst. 40, 745 (2013)
Y.T. Lai, J.C. Kuo, Y.J. Yang, Sens. Actuators A: Phys. 215, 83 (2014)
Y.T. Lai, J.C. Kuo, Y.J. Yang, Appl. Phys. Lett. 102, 191912 (2013)
A.G. Petrov, Y.G. Marinov, H.P. Hinov, L. Todorova, M. Dencheva-Zarkova, S. Sridevi, P.M. Rafailov, U. Dettlaff-Weglikowska, Mol. Cryst. Liq. Cryst. 545, 58/1282 (2011)
H.P. Hinov, J.I. Pavlič, Y.G. Marinov, A.G. Petrov, S. Sridevi, P.M. Rafailov, U. Dettlaff-Weglikowska, in Proceedings of 16 ISCMP: Progress in Solid State and Molecular Electronics, Ionics and Photonics, 2010, J. Phys.: Conf. Ser., Vol. 253 (IOP Publishing, 2010)
A. Buka, N. Éber (Editors), Flexoelectricity in Liquid Crystals: Theory, Experiments and Applications (Imperial College Press, 2012)
R.B. Meyer, Phys. Rev. Lett. 22, 918 (1969)
W. Helfreich, Z. Naturforsch. A 26, 833 (1971)
J. Prost, J.P. Marcerou, J. Phys. (Paris) 38, 315 (1977)
M.A. Osipov, Sov. Phys. JETP 58, 1167 (1983)
A. Ferrarini, Phys. Rev. E 64, 021710 (2001)
A.M. Somoza, C. Sagui, C. Roland, Phys. Rev. B 63, 081403 (2001)
S. Iijima, C. Brabec, A. Maiti, J. Bernholc, J. Chem. Phys. 104, 2089 (1996)
A. Rochefort, P. Avouris, F. Lesage, D.R. Salahub, Phys. Rev. B 60, 13824 (1999)
F.C. Frank, Discuss. Faraday Soc. 25, 19 (1958)
S.Y. Jeon, S.H. Shin, S.J. Jeong, S.H. Lee, S.H. Jeong, Y.H. Lee, H.C. Choi, K.J. Kim, Appl. Phys. Lett. 90, 121901 (2007)
S.P. Yadav, S. Singh, Prog. Mater. Sci. 80, 38 (2016)
K. Schiele, S. Trimper, Phys. Status Solidi B 118, 267 (1983)
D.W. Berreman, S. Meiboom, Phys. Rev. A 30, 1955 (1984)
A. Poniewierski, T.J. Sluckin, Mol. Phys. 55, 1113 (1985)
P.G. De Gennes, Mol. Cryst. Liq. Cryst. 12, 193 (1971)
H. Mori, J.E.C. Gartland, J.R. Kelly, P. Boss, Jpn. J. Appl. Phys. 38, 135 (1999)
P.J. Flory, Principles of Polymer Chemistry (Cornell University Press, 1953)
M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, 1988)
P.G. De Gennes, J. Prost, The Physics of Liquid Crystals (Oxford University Press, 1993)
H. Yokoyama, H.A. Van Sprang, J. Appl. Phys. 57, 4520 (1985)
H.J. Coles, Mol. Cryst. Liq. Cryst. 49, 67 (1978)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Moghadas, F., Poursamad, J.B., Sahrai, M. et al. Flexoelectric coefficients enhancement via doping carbon nanotubes in nematic liquid crystal host. Eur. Phys. J. E 42, 103 (2019). https://doi.org/10.1140/epje/i2019-11864-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epje/i2019-11864-1