Abstract
We obtained carbon nanotubes (CNTs) doped polymer dispersed liquid crystal (PDLC) films using the nematic E7 and polymethyl methacrylate, a composite that combines the benefic characteristic of the liquid crystals (LC) and carbon nanoparticles. The clearing temperatures recorded by differential scanning calorimetry for the PDLC blends were found to be lower than the value recorded for pure E7 LC mixture with no significant impact of the CNTs’ concentration. Broadband dielectric spectroscopy (DS) measurements were performed in the \( (10^{ - 1} \div 10^{7} )\;{\text{Hz}} \) frequency range, in the temperature domain (280–350) K. From the DS study, a two order magnitude variation of the conductivity over the entire temperature range was observed. The presence of CNTs results in an increase of electrical conductivity, with increasing concentration. Because the loss tangent spectra have complex shapes, they were fitted using the generalized Havriliak–Negami functions, and the characteristic relaxation times were extracted. The dependency of the characteristic relaxation time on temperature was modeled using the Vogel–Fulcher–Tammann function, and it showed a temperature variation according to the Arrhenius law. The increase of the CNT concentration increases the activation energy of the molecular electric dipoles of the LC. The interface LC-polymer interactions influence the nematic to isotropic phase transition of the LC.
Graphic abstract
Similar content being viewed by others
References
P.S. Drzaic, Liquid Crystal Dispersions (Word Sci, Singapore, 1995)
H. Ramanitra, P. Chanclou, B. Vinouze, L. Dupont, Mol. Cryst. Liq. Cryst. 404(1), 57–73 (2003). https://doi.org/10.1080/15421400390249952
H. Hakemi, Liq. Cryst. Today 26(3), 70–73 (2017). https://doi.org/10.1080/1358314X.2017.1359143
M. Ozolinsh, G. Papelba, Ferroelectrics 304(1), 207–212 (2004). https://doi.org/10.1080/00150190490456790
T.C. Hsu, C.H. Lu, Y.T. Huang, W.P. Shih, W.S. Chen, Sens. Actuators, A 169(2), 341–346 (2011). https://doi.org/10.1016/j.sna.2011.01.018
J. Lagerwall, G. Scalia, J. Mater. Chem. 18(25), 2890–2898 (2008). https://doi.org/10.1039/b802707b
M. Rahman, W.J. Lee, Phys. D: Appl. Phys., 42(6), 42, (063001-1)-(063001-12), (2009), https://doi.org/10.1088/0022-3727/42/6/063001
L. Dolgov, O. Kovalchuk, N. Lebovka, S. Tomylko, O. Yaroshchuk, Liquid crystal dispersions of carbon nanotubes: dielectric, electro-optical and structural peculiarities, in Carbon Nanotubes, ed. by J.M. Marulanda (InTechOpen, 2010). https://doi.org/10.5772/39439
I. Dierking, G. Scalia, P. Morales, D. LeClere, Adv. Mat. 16(11), 865–869 (2004). https://doi.org/10.1002/adma.200306196
C.P. Ganea, D. Manaila-Maximean, U.P.B. Sci. Bull. Ser. A 73(4), 209–216 (2011)
S. Frunza, A. Schönhals, L. Frunza, T. Beica, I. Zgura, P. Ganea, D. Stoenescu, Chem. Phys. 372, 51–60 (2010). https://doi.org/10.1016/j.chemphys.2010.04.031
S. Frunza, A. Schonhals, L. Frunza, P. Ganea, H. Kosslick, J. Harloff, A. Schulz, J. Phys. Chem. B 114, 12840–12846 (2010). https://doi.org/10.1021/jp1071617
S. Frunza, L. Frunza, C.P. Ganea, I. Zgura, A. Schoenhals, UPB Sci. Bull. Ser. A 81, 223–236 (2019)
D. Manaila-Maximean, V. Cîrcu, P.C. Ganea, Beilstein J. Nanotechnol. 9, 164–174 (2018). https://doi.org/10.3762/bjnano.9.19
D. Manaila-Maximean, V. Cîrcu, C.P. Ganea, A. Barar, O. Danila, T. Staicu, V.A. Loiko, A.V. Konkolovich, A.A. Miskevich, in (SPIE) Conference Series (Vol. 10977), p. 1097702, (2018), https://doi.org/10.1117/12.2326186
V.A. Loiko, A.V. Konkolovich, A.A. Miskevich, D. Manaila-Maximean, O. Danila, V. Cîrcu, A. Bărar, J. Quant. Spectrosc. Radiat. Transf. 245, 106892 (2020). https://doi.org/10.1016/j.jqsrt.2020.106892
K.B. Zegadlo, H. El Ouazzani, I. Cieslik, R. Weglowski, J. Zmija, S. Klosowicz, A. Majchrowski, J. Mysliwiec, B. Sahraoui, M.A. Karpierz, Opt. Mater. 34(10), 1704–1707 (2012). https://doi.org/10.1016/j.optmat.2012.02.027
D. Donescu, R.C. Fierascu, M. Ghiurea, D. Manaila-Maximean, C.A. Nicolae, R. Somoghi, C.I. Spataru, N. Stanica, V. Raditoiu, E. Vasile, Appl. Surf. Sci. 414, 8–17 (2017). https://doi.org/10.1016/j.apsusc.2017.04.061
S. Tomylko, O. Yaroshchuk, O. Kovalchuk, U. Maschke, R. Yamaguchi, Mol. Cryst. Liq. Cryst. 541(1), 35–273 (2011). https://doi.org/10.1080/15421406.2011.569658
V.A. Loiko, Konkolovich, A.A. Miskevich et al., Opt. Spectrosc. 128, 331–338 (2020). https://doi.org/10.1134/s0030400x20030121
T. Lahiri, S.K. Pushkar, P. Poddar, Phys. B 588, 412177 (2020). https://doi.org/10.1016/j.physb.2020.412177
L. Lisetski, M. Soskin, N. Lebovka. Carbon nanotubes in liquid crystals: fundamental properties and applications, in Physics of Liquid Matter: Modern Problems, Springer Proceedings in Physics, ed. by L. Bulavin, N. Lebovka, (2015), p. 171, https://doi.org/10.1007/978-3-319-20875-6_10
S. Iijima, Nature 354, 56–58 (1991). https://doi.org/10.1038/354056a0
M.S. Dresselhaus, G. Dresselhaus, R. Saito, Carbon 33(7), 883–891 (1995). https://doi.org/10.1016/0008-6223(95)00017-8
M.S.E. Peterson, G. Georgiev, T.J. Atherton, P. Cebe, Liq. Cryst. 45, 450–458 (2018). https://doi.org/10.1080/02678292.2017.1346212
Y. Wu, H. Cao, M. Duan, E. Li, H. Wang, Z. Yang, D. Wang, W. He, Liq. Cryst. 7, 1023–1031 (2018). https://doi.org/10.1080/02678292.2017.1404153
D. Manaila-Maximean, O. Danila, C.P. Ganea, P.L. Almeida, Eur. Phys. J. Plus 133(4), 159 (2018). https://doi.org/10.1140/epjp/i2018-11997-8
O. Danila, J. Quant. Spectrosc. Radiat. Transf. 254, 107209 (2020). https://doi.org/10.1016/j.jqsrt.2020.107209
Z.Z. Zhong, D.E. Schuele, W.L. Gordon, K.J. Adamic, R.B. Akins, J. Pol. Sci. Part B Polym. Phys. 30(13), 1443–1449 (1992). https://doi.org/10.1002/polb.1992.090301303
T. Kyu, M. Mustafa, J.-C. Yang, J. Y. Kim, P. Palffy-Muhoray, in Polymer Solutions, Blends, and Interfaces, ed. by I. Noda, D.N. Rubingh, (Elsevier, 1992), p. 245
H. Duran, B. Gazdecki, A. Yamashita, T. Kyu, Liq. Cryst. 32(7), 815–821 (2005). https://doi.org/10.1080/02678290500191204
K.P. Sigdel, G.S. Iannacchione, Eur. Phys. J. E 34, 34 (2011)
P. Kalakonda, R. Basu, I.R. Nemitz, C. Rosenblatt, G.S. Iannacchione, J. Chem. Phys. 140, 104908 (2014). https://doi.org/10.1063/1.4867791
J.R. Kelly, D. Seekola, in Liquid Crystal Displays and Applications, ed. by J.W. Doane, Z. Yaniv, SPIE, 1257,17, 17–28, (1990). https://doi.org/10.1117/12.19923
M.T. Viciosa, A.M. Nunes, A. Fernandes, P.L. Almeida, M.H. Godinho, M.D. Dionísio, Liq. Cryst. 29, 429–441 (2002). https://doi.org/10.1080/02678290110113478
S. Urban, B. Gestblom, H. Kresse, A. Dabrowski, Z. Naturforsch. A, 51(7), 834–842, (1996), https://doi.org/10.1515/zna-1996-0707
C.P. Ganea, Rom. J. Phys. 57(3–4), 664–675 (2012)
A. Yildirim, P. Szymoniak, K. Sentker, M. Butschies, A. Buhlmeyer, P. Huber, S. Laschat, A. Schonhals, Phys. Chem. Chem. Phys. 20, 5626 (2018). https://doi.org/10.1039/C7CP08186C
Acknowledgements
Acknowledgement PCG acknowledges the funding through Core Program PN19-03 (Contract No. 21 N/08.02.2019), from Romanian Ministry of Research and Innovation.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Ganea, C.P., Manaila-Maximean, D. & Cîrcu, V. Dielectric investigations on carbon nanotubes doped polymer dispersed liquid crystal films. Eur. Phys. J. Plus 135, 797 (2020). https://doi.org/10.1140/epjp/s13360-020-00795-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/s13360-020-00795-w