[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Creation of optical chain in the focal region of high NA lens of tightly focused higher order Gaussian beam

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Based on vectorial diffraction theory, the interference effect of phase filter to generate multiple optical focal spot in the focal region of high numerical aperture (NA) objective lens on tightly focused transversely polarized Laguerre Gaussian beam is studied numerically. Basically the incident beam will generate a focal spot in the focal region, in order to change the focal structure, the diffractive optical element (DOE) (Phase filter) is introduced. Upon optimizing and tunning the angles of DOE the multiple focal spot in the subwavelength scale is generated in the focal region of high NA objective lens. Such kind of subwavelength focal spot segment may find wide applications in optical traps, biological application, atmospheric sciences and optical manipulation technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.F. Wang, L.P. Shi, B. Lukyanchuk, C. Sheppard, C.T. Chong, Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nat. Photonics 2, 501–505 (2008)

    Article  Google Scholar 

  2. H.F. Wang, L.P. Shi, G.Q. Yuan, X.S. Miao, W.L. Tan, C.T. Chong, Subwavelength and super-resolution nondiffraction beam. Appl. Phys. Lett. 89, 171102 (2006)

    Article  ADS  Google Scholar 

  3. C.C. Sun, C.K. Liu, Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation. Opt. Lett. 28, 99–101 (2003)

    Article  ADS  Google Scholar 

  4. M. Erdelyi, Z.L. Horvath, G. Szabo, Z. Bor, F.K. Tittel, J.R. Cavallaro, M.C. Smayling, Generation of diffraction-free beams for applications in optical microlithography. J. Vac. Sci. Technol. B15, 287–292 (1997)

    Article  Google Scholar 

  5. L.B. Liu, C. Liu, W.C. Howe, C.J.R. Sheppard, N.G. Chen, Binary-phase spatial filter for real-time swept-source optical coherence microscopy. Opt. Lett. 32, 2375–2377 (2007)

    Article  ADS  Google Scholar 

  6. R.A. Leitgeb, M. Villiger, A.H. Bachmann, L. Steinmann, T. Lasser, Extended focus depth for Fourier domain optical coherence microscopy. Opt. Lett. 31, 2450–2452 (2006)

    Article  ADS  Google Scholar 

  7. Q.Q. Zhang, J.G. Wang, M.W. Wang, J. Bu, S.W. Zhu, R. Wang, B.Z. Gao, X.-C. Yuan, A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography. J. Opt. 13, 055301 (2011)

    Article  ADS  Google Scholar 

  8. A.V. Nesterov, V.G. Niziev, Laser beams with axially symmetric polarization. J. Phys. D 33, 1817–1822 (1999)

    Article  ADS  Google Scholar 

  9. B. Hafizi, E. Esarey, P. Sprangle, Laser-driven acceleration with Bessel beams. Phys. Rev. E 55, 3539–3545 (1997)

    Article  ADS  Google Scholar 

  10. B. Richards, E. Wolf, Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system. Proc. R. Soc. Lond. A Math. Phys. Sci. 253, 358–379 (1959)

    Article  ADS  MATH  Google Scholar 

  11. L. Cicchitelli, H. Hora, R. Postle, Longitudinal field components for laser beams in vacuum. Phys. Rev. A 41, 3727 (1990)

    Article  ADS  Google Scholar 

  12. J.R. Fontana, R.H. Pantell, A high-energy laser accelerator for electrons using the inverse Cherenkov effect. J. Appl. Phys. 54, 4285 (1983)

    Article  ADS  Google Scholar 

  13. R.D. Romea, W.D. Kimura, Modeling of inverse Čerenkov laser acceleration with axicon laser beam focusing. Phys. Rev. D 42, 1807 (1990)

    Article  ADS  Google Scholar 

  14. J. Rosenzweig, A. Murokh, C. Pellegrini, A proposed dielectric-loaded resonant laser accelerator. Phys. Rev. Lett. 74, 2467 (1995)

    Article  ADS  Google Scholar 

  15. L. Novotny, M.R. Beversluis, K.S. Youngworth, T.G. Brown, Longitudinal field modes probed by single molecules. Phys. Rev. Lett. 86, 5251 (2001)

    Article  ADS  Google Scholar 

  16. A. Bouhelier, M. Beversluis, A. Hartschuh, L. Novotny, Near-field second harmonic generation induced by local field enhancement. Phys. Rev. Lett. 90, 013903 (2003)

    Article  ADS  Google Scholar 

  17. D.P. Biss, T.G. Brown, Polarization-vortex-driven second-harmonic generation. Opt. Lett. 28, 923 (2003)

    Article  ADS  Google Scholar 

  18. E.Y.S. Yew, C.J.R. Sheppard, Second-harmonic generation polarization microscopy with radially and azimuthally polarized beams. Opt. Commun. 275, 453 (2007)

    Article  ADS  Google Scholar 

  19. N. Hayazawa, Y. Saito, S. Kawata, Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy. Appl. Phys. Lett. 85, 6239 (2004)

    Article  ADS  Google Scholar 

  20. J.H. McLeod, The axicon: a new type of optical element. J. Opt. Soc. Am. 44, 592 (1954)

    Article  ADS  Google Scholar 

  21. N. Davidson, A.A. Friesem, E. Hasman, Holographic axilens: high resolution and long focal depth. Opt. Lett. 16, 523 (1991)

    Article  ADS  Google Scholar 

  22. P. Suresh, C. Mariyal, K.B. Rajesh, T.V.S. Pillai, Z. Jaroszewicz, Generation of strong uniform transversely polarized non diffracting beam using high NA lens axicon with binary phase mask. Appl. Opt. 52(4), 849–853 (2013)

    Article  ADS  Google Scholar 

  23. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, S. Jackel, Efficient extra cavity generation of radially and azimuthally polarized beams. Opt. Lett. 32, 1468 (2007)

    Article  ADS  Google Scholar 

  24. C.J.R. Sheppard, High-aperture beams. J. Opt. Soc. Am. A 18, 1579 (2001)

    Article  ADS  Google Scholar 

  25. R. Dorn, S. Quabis, G. Leuchs, The focus of light-linear polarization breaks the rotational symmetry of the focal spot. J. Mod. Opt. 50, 1917 (2003)

    ADS  MathSciNet  Google Scholar 

  26. V. Ravi, P. Suresh, K.B. Rajesh, Z. Jaroszewicz, P.M. Anbarasan, T.V.S. Pillai, Generation of Sub wavelength longitudinal magnetic probe using high numerical aperture lens axicon and binary phase plate. J. Opt. 14, 055704 (2012)

    Article  ADS  Google Scholar 

  27. P. Suresh, K.B. Rajesh, T.V. Sivasubramonia Pillai, Z. Jaroszewicz, Effect of annular obstruction and numerical aperture in the focal region of high NA objective lens. Opt. Commun. 318, 137–141 (2014)

    Article  ADS  Google Scholar 

  28. K.S. Youngworth, T.G. Brown, Focusing of high numerical aperture cylindrical-vector beams. Opt. Express 7, 77 (2000)

    Article  ADS  Google Scholar 

  29. G.H. Yuan, S.B. Wei, X.-C. Yuan, Nondiffracting transversally polarized beam. Opt. Lett. 36, 3479–3481 (2011)

    Article  ADS  Google Scholar 

  30. K.B. Rajesh, P.M. Anbarasan, Generation of sub-wavelength and super-resolution longitudinally polarized non-diffraction beam using lens axicon. Chin. Opt. Lett. 6, 785 (2008)

    Article  Google Scholar 

  31. Z. Nie, Z. Li, G. Shi, X. Zhang, Y. Wang, Y. Song, Generation of a sub-wavelength focal spot with a long transversally polarized optical needle using a double-ring-shaped azimuthally polarized beam. Opt. Laser Eng. 59, 93–97 (2014)

    Article  Google Scholar 

  32. K. Lalithambigai, P.M. Anbarasan, K.B. Rajesh, Generation of needle of transversely polarized beam using complex spiral phase mask. Opt. Quant. Electron. 47, 1027–1033 (2015)

    Article  Google Scholar 

  33. G.H. Yuan, S.B. Wei, X.C. Yuan, Generation of nondiffracting quasi-circular polarization beams using an amplitude modulated phase hologram. J. Opt. Soc. Am. A 28, 1716–1720 (2011)

    Article  ADS  Google Scholar 

  34. C.M. Sundaram, K. Prabakaran, P.M. Anbarasan, K.B. Rajesh, A.M. Musthafa, Creation of super long transversely polarized optical needle using azimuthally polarized multi Gaussian beam. Chin. Phys. Lett. 33, 064203 (2016)

    Article  ADS  Google Scholar 

  35. K. Huang, H. Ye, H. Liu, J. Teng, S.P. Yeo, C.W. Qiu (2014) arXiv:1406.3823

  36. F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, M. Hong, Sci. Rep. 5, 1 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Suresh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh, P. Creation of optical chain in the focal region of high NA lens of tightly focused higher order Gaussian beam. J Opt 46, 225–230 (2017). https://doi.org/10.1007/s12596-017-0411-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-017-0411-4

Keywords

Navigation