Abstract
Based on vectorial diffraction theory, the interference effect of phase filter to generate multiple optical focal spot in the focal region of high numerical aperture (NA) objective lens on tightly focused transversely polarized Laguerre Gaussian beam is studied numerically. Basically the incident beam will generate a focal spot in the focal region, in order to change the focal structure, the diffractive optical element (DOE) (Phase filter) is introduced. Upon optimizing and tunning the angles of DOE the multiple focal spot in the subwavelength scale is generated in the focal region of high NA objective lens. Such kind of subwavelength focal spot segment may find wide applications in optical traps, biological application, atmospheric sciences and optical manipulation technology.
Similar content being viewed by others
References
H.F. Wang, L.P. Shi, B. Lukyanchuk, C. Sheppard, C.T. Chong, Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nat. Photonics 2, 501–505 (2008)
H.F. Wang, L.P. Shi, G.Q. Yuan, X.S. Miao, W.L. Tan, C.T. Chong, Subwavelength and super-resolution nondiffraction beam. Appl. Phys. Lett. 89, 171102 (2006)
C.C. Sun, C.K. Liu, Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation. Opt. Lett. 28, 99–101 (2003)
M. Erdelyi, Z.L. Horvath, G. Szabo, Z. Bor, F.K. Tittel, J.R. Cavallaro, M.C. Smayling, Generation of diffraction-free beams for applications in optical microlithography. J. Vac. Sci. Technol. B15, 287–292 (1997)
L.B. Liu, C. Liu, W.C. Howe, C.J.R. Sheppard, N.G. Chen, Binary-phase spatial filter for real-time swept-source optical coherence microscopy. Opt. Lett. 32, 2375–2377 (2007)
R.A. Leitgeb, M. Villiger, A.H. Bachmann, L. Steinmann, T. Lasser, Extended focus depth for Fourier domain optical coherence microscopy. Opt. Lett. 31, 2450–2452 (2006)
Q.Q. Zhang, J.G. Wang, M.W. Wang, J. Bu, S.W. Zhu, R. Wang, B.Z. Gao, X.-C. Yuan, A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography. J. Opt. 13, 055301 (2011)
A.V. Nesterov, V.G. Niziev, Laser beams with axially symmetric polarization. J. Phys. D 33, 1817–1822 (1999)
B. Hafizi, E. Esarey, P. Sprangle, Laser-driven acceleration with Bessel beams. Phys. Rev. E 55, 3539–3545 (1997)
B. Richards, E. Wolf, Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system. Proc. R. Soc. Lond. A Math. Phys. Sci. 253, 358–379 (1959)
L. Cicchitelli, H. Hora, R. Postle, Longitudinal field components for laser beams in vacuum. Phys. Rev. A 41, 3727 (1990)
J.R. Fontana, R.H. Pantell, A high-energy laser accelerator for electrons using the inverse Cherenkov effect. J. Appl. Phys. 54, 4285 (1983)
R.D. Romea, W.D. Kimura, Modeling of inverse Čerenkov laser acceleration with axicon laser beam focusing. Phys. Rev. D 42, 1807 (1990)
J. Rosenzweig, A. Murokh, C. Pellegrini, A proposed dielectric-loaded resonant laser accelerator. Phys. Rev. Lett. 74, 2467 (1995)
L. Novotny, M.R. Beversluis, K.S. Youngworth, T.G. Brown, Longitudinal field modes probed by single molecules. Phys. Rev. Lett. 86, 5251 (2001)
A. Bouhelier, M. Beversluis, A. Hartschuh, L. Novotny, Near-field second harmonic generation induced by local field enhancement. Phys. Rev. Lett. 90, 013903 (2003)
D.P. Biss, T.G. Brown, Polarization-vortex-driven second-harmonic generation. Opt. Lett. 28, 923 (2003)
E.Y.S. Yew, C.J.R. Sheppard, Second-harmonic generation polarization microscopy with radially and azimuthally polarized beams. Opt. Commun. 275, 453 (2007)
N. Hayazawa, Y. Saito, S. Kawata, Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy. Appl. Phys. Lett. 85, 6239 (2004)
J.H. McLeod, The axicon: a new type of optical element. J. Opt. Soc. Am. 44, 592 (1954)
N. Davidson, A.A. Friesem, E. Hasman, Holographic axilens: high resolution and long focal depth. Opt. Lett. 16, 523 (1991)
P. Suresh, C. Mariyal, K.B. Rajesh, T.V.S. Pillai, Z. Jaroszewicz, Generation of strong uniform transversely polarized non diffracting beam using high NA lens axicon with binary phase mask. Appl. Opt. 52(4), 849–853 (2013)
G. Machavariani, Y. Lumer, I. Moshe, A. Meir, S. Jackel, Efficient extra cavity generation of radially and azimuthally polarized beams. Opt. Lett. 32, 1468 (2007)
C.J.R. Sheppard, High-aperture beams. J. Opt. Soc. Am. A 18, 1579 (2001)
R. Dorn, S. Quabis, G. Leuchs, The focus of light-linear polarization breaks the rotational symmetry of the focal spot. J. Mod. Opt. 50, 1917 (2003)
V. Ravi, P. Suresh, K.B. Rajesh, Z. Jaroszewicz, P.M. Anbarasan, T.V.S. Pillai, Generation of Sub wavelength longitudinal magnetic probe using high numerical aperture lens axicon and binary phase plate. J. Opt. 14, 055704 (2012)
P. Suresh, K.B. Rajesh, T.V. Sivasubramonia Pillai, Z. Jaroszewicz, Effect of annular obstruction and numerical aperture in the focal region of high NA objective lens. Opt. Commun. 318, 137–141 (2014)
K.S. Youngworth, T.G. Brown, Focusing of high numerical aperture cylindrical-vector beams. Opt. Express 7, 77 (2000)
G.H. Yuan, S.B. Wei, X.-C. Yuan, Nondiffracting transversally polarized beam. Opt. Lett. 36, 3479–3481 (2011)
K.B. Rajesh, P.M. Anbarasan, Generation of sub-wavelength and super-resolution longitudinally polarized non-diffraction beam using lens axicon. Chin. Opt. Lett. 6, 785 (2008)
Z. Nie, Z. Li, G. Shi, X. Zhang, Y. Wang, Y. Song, Generation of a sub-wavelength focal spot with a long transversally polarized optical needle using a double-ring-shaped azimuthally polarized beam. Opt. Laser Eng. 59, 93–97 (2014)
K. Lalithambigai, P.M. Anbarasan, K.B. Rajesh, Generation of needle of transversely polarized beam using complex spiral phase mask. Opt. Quant. Electron. 47, 1027–1033 (2015)
G.H. Yuan, S.B. Wei, X.C. Yuan, Generation of nondiffracting quasi-circular polarization beams using an amplitude modulated phase hologram. J. Opt. Soc. Am. A 28, 1716–1720 (2011)
C.M. Sundaram, K. Prabakaran, P.M. Anbarasan, K.B. Rajesh, A.M. Musthafa, Creation of super long transversely polarized optical needle using azimuthally polarized multi Gaussian beam. Chin. Phys. Lett. 33, 064203 (2016)
K. Huang, H. Ye, H. Liu, J. Teng, S.P. Yeo, C.W. Qiu (2014) arXiv:1406.3823
F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, M. Hong, Sci. Rep. 5, 1 (2015)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Suresh, P. Creation of optical chain in the focal region of high NA lens of tightly focused higher order Gaussian beam. J Opt 46, 225–230 (2017). https://doi.org/10.1007/s12596-017-0411-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12596-017-0411-4