Abstract
Based on vector diffraction theory, the tight focusing properties of radially polarized Bessel Gaussian beam (BGB), phase modulated by annular Walsh function filters and focused by a high NA parabolic mirror system are studied numerically. The annular Walsh filter derived from the annular Walsh functions forms a complete set of orthogonal phase filters that takes values of either 0 or π phase corresponding to + 1 or −1 over the domain specified by the inner and outer radii of the annulus. Numerical results show that by properly modulating the annular obstruction of Walsh filter and pupil to beam ratio of the input BGB, one can generate many novel focal patterns such as three-dimensional multiple sub-wavelength scale focal spot segments, optical needle, axial flat top profile, etc. We expect that such three-dimensional chain of focal structures is useful for nano-lithography, particle trapping and transportation, as well as confocal and STED microscopy, microstructure fabrication and so on.
Similar content being viewed by others
Reference
J. Liu, Z. Li, Controlled mechanical motions of microparticles in optical tweezers. Micromachines 9, 232 (2018)
L. Turquet, X. Zang, J.P. Kakko, H. Lipsanen, G. Bautista, M. Kauranen, Demonstration of longitudinally polarized optical needles. Opt. Express 26, 27572 (2018)
B. Wang, J. Shi, T. Zhang, X. Xu, Y. Cao, X. Li, Improved lateral resolution with an annular vortex depletion beam in STED microscopy. Opt. Lett. 42, 4885 (2017)
M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, S. Juodkazis, Ultrafast laser processing of materials: from science to industry. Light Sci. Appl. 5(8), 16133 (2016)
Y. Kozawa, D. Matsunaga, S. Sato, Super resolution imaging via super oscillation focusing of a radially polarized beam. Optica 5, 86 (2018)
Y. Zhang, X. Dou, Y. Dai, X. Wang, C. Min, X. Yuan, All-optical manipulation of micrometer-sized metallic particles. Photon. Res. 6, 66 (2018)
Y. Zhang, J. Bai, Improving the recording ability of a near-field optical storage system by higher-order radially polarized beams. Opt. Express 17, 3698 (2009)
K.S. Youngworth, T.G. Brown, Focusing of high numerical aperture cylindrical-vector beams. Opt. Express 7, 77 (2000)
C. Shi, Z. Nie, Y. Tian, Super-resolution longitudinally polarized light needle achieved by tightly focusing radially polarized beams. Optoelectron. Lett. (2018). https://doi.org/10.1007/s11801-018-7162-6
J. Lin, Y. Ma, P. Jin, G. Davies, J. Tan, Longitudinal polarized focusing of radially polarized sinh-Gaussian beam. Opt. Express 21, 13193 (2013)
T. Zeng, J. Ding, Three-dimensional multiple optical cages formed by focusing double-ring shaped radially and azimuthally polarized beams. Chin. Opt. Lett. 16, 031405 (2018)
S.H. Yan, B.L. Yao, W. Zhao, M. Lei, Generation of multiple spherical spots with a radially polarized beam in a 4Pi focusing system. J. Opt. Soc. Am. A 27, 2033 (2010)
P. Mukherjee, L.N. Hazra, Far field diffraction properties of annular walsh filters. Adv Opt Tech 6, 360450 (2013)
P. Mukherjee, L.N. Hazra, Self-similarity in the far field diffraction patterns of annular walsh filters. Asian J. Phys. 23, 543 (2014)
P. Mukherjee, L.N. Hazra, Self-similarity in radial Walsh filters and axial intensity distribution in the far field diffraction pattern. J. Opt. Soc. Am. A 31, 379 (2014)
P. Mukherjee, L.N. Hazra, Self-similarity in transverse intensity distributions in the far field diffraction pattern of radial walsh filters. Adv. Opt. 7, 352316 (2014)
S. Mukhopadhyay, S. Sarkar, K. Bhattacharya, L.N. Hazra, Polarization phase shifting interferometric technique for phase calibration of a reflective phase spatial light modulator. Opt. Eng. 52, 035602 (2013)
L.N. Hazra, A. Guha, Far field diffraction properties of radial Walsh filters. J. Opt. Soc. Am. A 3, 843 (1986)
L.N. Hazra, A. Banerjee, Application of walsh function in generation of optimum apodizers. J. Opt. 5, 19 (1976)
M. De, L.N. Hazra, Walsh functions in problems of optical imagery. Opt. Acta 24, 221 (1977)
D. Fortun, P. Guichard, V. Hamel, C.O.S. Sorzano, N. Banterle, P. Gönczy, M. Unser, Reconstruction from multiple particles for 3D isotropic resolution in fluorescence microscopy. IEEE Trans. Med. Imaging (2018). https://doi.org/10.1109/TMI.2018.2795464
N. Davidson, N. Bokor, High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens. Opt. Lett. 29, 1318 (2004)
J. Stadler, C. Stanciu, C. Stupperichand, A.J. Meixner, Tighter focusing with a parabolic mirror. Opt. Lett. 68, 681 (2008)
N. Umamageswari, K.B. Rajesh, M. Udhayakumar, K. Prabakaran, Z. Jaroszewicz, Tight focusing properties of spirally polarized LG (1,1)* beam with high NA parabolic mirror. Opt. Quantum Electron. 50, 11 (2018)
Y. Durand, J.C. Woehl, B. Viellerobe, W. Göhde, M.M. Orrit, New design of acryostat-mounted scanning near-field optical microscope for single molecule spectroscopy. Rev. Sci. Instrum. 70, 1318 (1999)
F. Merenda, J. Rohner, J. Marc, Miniaturized high-NA focusing-mirror multiple optical tweezers. Opt. Exp. 15, 6075 (2007)
C.K. Chou, C. Auchter, J. Lilieholm, K. Smith, B. Blinov, Single ion imaging and fluorescence collection with a parabolic mirror trap. Rev. Sci. Instrum. 88, 086101 (2017)
J.L. Walsh, A closed set of normal orthogonal functions. Am. J. Math. 45, 5 (1923)
L.N. Hazra, Walsh filters in tailoring of resolution in microscopic imaging. Micron 38, 129 (2007)
F. Machado, V. Ferrando, F. Giménez, W.D. Furlan, J.A. Monsoriu, Multiple-plane image formation by walsh zone plates. Opt. Express 26, 21210–21218 (2018)
D. Thiruarul, K.B. Rajesh, M. Lavanya et al., Generation of ultra-long multiple optical tubes using annular Walsh function filters. Opt. Quantum Electron. 52, 396 (2020)
X. Zhuang, Unraveling DNA condensation with optical tweezers. Mol. Biol. 305, 5681 (2004)
Y. Harada, Y. Arai, R. Yasuda, K. Akashi, H. Miyata, K. Kinosita, H. Itoh, Tying a molecular knot with optical tweezers. Nature 399, 6735 (1999)
H. Song, Y. Liu, B. Zhang, K. Tian, P. Zhu, H. Lu, Q. Tang, Study of in vitro RBCs membrane elasticity with AOD scanning optical tweezers. Biomed. Opt. Express 8, 384 (2016)
A. Banerjee, S. Chowdhury, S.K. Gupta, Optical tweezers: autonomous robots for the manipulation of biological cells. IEEE Robot. Autom. Mag. 21, 81 (2014)
F.M. Dickey, S.C. Holswade, Laser beam shaping—theory and techniques (Marcel Dekker, New York, 2000)
J. Kreuzer, Laser light redistribution in illuminating optical signal processing systems (MIT, Cambridge, 1965)
D.L. Shealy, History of beam shaping (CRC Press, New York, 2005)
L.A. Romero, F.M. Dickey, Lossless laser beam shaping. J. Opt. Soc. Am. A 13, 751 (1996)
M.G. Tarallo, J. Miller, J. Agresti, E. D’Ambrosio, R. DeSalvo, D. Forest, B. Lagrange, J.M. Mackowsky, C. Michel, J.L. Montorio, N. Morgado, L. Pinard, A. Remilleux, B. Simoni, P. Willems, Generation of a flat-top laser beam for gravitational wave detectorsby means of a nonspherical fabry-perot resonator. Appl. Opt. 46, 6648 (2007)
M. Takamoto, F.-L. Hong, R. Higashi, H. Katori, An optical latticec lock. Nature 435, 321 (2005)
E. Jane, G. Vidal, W. Dur, P. Zoller, J.I. Cirac, Simulation of quantum dynamics with quantum optical systems. Quantum Inf. Comput. 3, 15 (2003)
E.T.F. Rogers, N.I. Zheludev, Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging. J. Opt. 15, 094008 (2013)
L. Turquet, X. Zang, J.P. Kakko, H. Lipsanen, G. Bautista, M. Kauranen, Demonstration of longitudinally polarized optical needles. Opt. Express (2018). https://doi.org/10.1364/OE.26.027572
X. Li, Y. Cao, N. Tian, L. Fu, M. Gu, Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate. Optica 2, 567 (2015)
A. Atajanov, A. Zhbanov, S. Yang, Sorting and manipulation of biological cells and the prospects for using optical forces. Micro Nano Syst. Lett. (2018). https://doi.org/10.1186/s40486-018-0064-3
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Umamageswari, N., Thiruarul, D., Lavanya, M. et al. Engineering axially polarized sub-wavelength scale focal structures using annular Walsh filter. J Opt 52, 589–596 (2023). https://doi.org/10.1007/s12596-022-01010-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12596-022-01010-y