[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Engineering axially polarized sub-wavelength scale focal structures using annular Walsh filter

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Based on vector diffraction theory, the tight focusing properties of radially polarized Bessel Gaussian beam (BGB), phase modulated by annular Walsh function filters and focused by a high NA parabolic mirror system are studied numerically. The annular Walsh filter derived from the annular Walsh functions forms a complete set of orthogonal phase filters that takes values of either 0 or π phase corresponding to + 1 or −1 over the domain specified by the inner and outer radii of the annulus. Numerical results show that by properly modulating the annular obstruction of Walsh filter and pupil to beam ratio of the input BGB, one can generate many novel focal patterns such as three-dimensional multiple sub-wavelength scale focal spot segments, optical needle, axial flat top profile, etc. We expect that such three-dimensional chain of focal structures is useful for nano-lithography, particle trapping and transportation, as well as confocal and STED microscopy, microstructure fabrication and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Reference

  1. J. Liu, Z. Li, Controlled mechanical motions of microparticles in optical tweezers. Micromachines 9, 232 (2018)

    Article  Google Scholar 

  2. L. Turquet, X. Zang, J.P. Kakko, H. Lipsanen, G. Bautista, M. Kauranen, Demonstration of longitudinally polarized optical needles. Opt. Express 26, 27572 (2018)

    Article  ADS  Google Scholar 

  3. B. Wang, J. Shi, T. Zhang, X. Xu, Y. Cao, X. Li, Improved lateral resolution with an annular vortex depletion beam in STED microscopy. Opt. Lett. 42, 4885 (2017)

    Article  ADS  Google Scholar 

  4. M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, S. Juodkazis, Ultrafast laser processing of materials: from science to industry. Light Sci. Appl. 5(8), 16133 (2016)

    Article  Google Scholar 

  5. Y. Kozawa, D. Matsunaga, S. Sato, Super resolution imaging via super oscillation focusing of a radially polarized beam. Optica 5, 86 (2018)

    Article  ADS  Google Scholar 

  6. Y. Zhang, X. Dou, Y. Dai, X. Wang, C. Min, X. Yuan, All-optical manipulation of micrometer-sized metallic particles. Photon. Res. 6, 66 (2018)

    Article  Google Scholar 

  7. Y. Zhang, J. Bai, Improving the recording ability of a near-field optical storage system by higher-order radially polarized beams. Opt. Express 17, 3698 (2009)

    Article  ADS  Google Scholar 

  8. K.S. Youngworth, T.G. Brown, Focusing of high numerical aperture cylindrical-vector beams. Opt. Express 7, 77 (2000)

    Article  ADS  Google Scholar 

  9. C. Shi, Z. Nie, Y. Tian, Super-resolution longitudinally polarized light needle achieved by tightly focusing radially polarized beams. Optoelectron. Lett. (2018). https://doi.org/10.1007/s11801-018-7162-6

    Article  Google Scholar 

  10. J. Lin, Y. Ma, P. Jin, G. Davies, J. Tan, Longitudinal polarized focusing of radially polarized sinh-Gaussian beam. Opt. Express 21, 13193 (2013)

    Article  ADS  Google Scholar 

  11. T. Zeng, J. Ding, Three-dimensional multiple optical cages formed by focusing double-ring shaped radially and azimuthally polarized beams. Chin. Opt. Lett. 16, 031405 (2018)

    Article  ADS  Google Scholar 

  12. S.H. Yan, B.L. Yao, W. Zhao, M. Lei, Generation of multiple spherical spots with a radially polarized beam in a 4Pi focusing system. J. Opt. Soc. Am. A 27, 2033 (2010)

    Article  ADS  Google Scholar 

  13. P. Mukherjee, L.N. Hazra, Far field diffraction properties of annular walsh filters. Adv Opt Tech 6, 360450 (2013)

    Google Scholar 

  14. P. Mukherjee, L.N. Hazra, Self-similarity in the far field diffraction patterns of annular walsh filters. Asian J. Phys. 23, 543 (2014)

    Google Scholar 

  15. P. Mukherjee, L.N. Hazra, Self-similarity in radial Walsh filters and axial intensity distribution in the far field diffraction pattern. J. Opt. Soc. Am. A 31, 379 (2014)

    Article  ADS  Google Scholar 

  16. P. Mukherjee, L.N. Hazra, Self-similarity in transverse intensity distributions in the far field diffraction pattern of radial walsh filters. Adv. Opt. 7, 352316 (2014)

    Google Scholar 

  17. S. Mukhopadhyay, S. Sarkar, K. Bhattacharya, L.N. Hazra, Polarization phase shifting interferometric technique for phase calibration of a reflective phase spatial light modulator. Opt. Eng. 52, 035602 (2013)

    Article  ADS  Google Scholar 

  18. L.N. Hazra, A. Guha, Far field diffraction properties of radial Walsh filters. J. Opt. Soc. Am. A 3, 843 (1986)

    Article  ADS  Google Scholar 

  19. L.N. Hazra, A. Banerjee, Application of walsh function in generation of optimum apodizers. J. Opt. 5, 19 (1976)

    Article  Google Scholar 

  20. M. De, L.N. Hazra, Walsh functions in problems of optical imagery. Opt. Acta 24, 221 (1977)

    Article  ADS  Google Scholar 

  21. D. Fortun, P. Guichard, V. Hamel, C.O.S. Sorzano, N. Banterle, P. Gönczy, M. Unser, Reconstruction from multiple particles for 3D isotropic resolution in fluorescence microscopy. IEEE Trans. Med. Imaging (2018). https://doi.org/10.1109/TMI.2018.2795464

    Article  Google Scholar 

  22. N. Davidson, N. Bokor, High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens. Opt. Lett. 29, 1318 (2004)

    Article  ADS  Google Scholar 

  23. J. Stadler, C. Stanciu, C. Stupperichand, A.J. Meixner, Tighter focusing with a parabolic mirror. Opt. Lett. 68, 681 (2008)

    Article  ADS  Google Scholar 

  24. N. Umamageswari, K.B. Rajesh, M. Udhayakumar, K. Prabakaran, Z. Jaroszewicz, Tight focusing properties of spirally polarized LG (1,1)* beam with high NA parabolic mirror. Opt. Quantum Electron. 50, 11 (2018)

    Article  Google Scholar 

  25. Y. Durand, J.C. Woehl, B. Viellerobe, W. Göhde, M.M. Orrit, New design of acryostat-mounted scanning near-field optical microscope for single molecule spectroscopy. Rev. Sci. Instrum. 70, 1318 (1999)

    Article  ADS  Google Scholar 

  26. F. Merenda, J. Rohner, J. Marc, Miniaturized high-NA focusing-mirror multiple optical tweezers. Opt. Exp. 15, 6075 (2007)

    Article  Google Scholar 

  27. C.K. Chou, C. Auchter, J. Lilieholm, K. Smith, B. Blinov, Single ion imaging and fluorescence collection with a parabolic mirror trap. Rev. Sci. Instrum. 88, 086101 (2017)

    Article  ADS  Google Scholar 

  28. J.L. Walsh, A closed set of normal orthogonal functions. Am. J. Math. 45, 5 (1923)

    Article  MathSciNet  MATH  Google Scholar 

  29. L.N. Hazra, Walsh filters in tailoring of resolution in microscopic imaging. Micron 38, 129 (2007)

    Article  Google Scholar 

  30. F. Machado, V. Ferrando, F. Giménez, W.D. Furlan, J.A. Monsoriu, Multiple-plane image formation by walsh zone plates. Opt. Express 26, 21210–21218 (2018)

    Article  ADS  Google Scholar 

  31. D. Thiruarul, K.B. Rajesh, M. Lavanya et al., Generation of ultra-long multiple optical tubes using annular Walsh function filters. Opt. Quantum Electron. 52, 396 (2020)

    Article  Google Scholar 

  32. X. Zhuang, Unraveling DNA condensation with optical tweezers. Mol. Biol. 305, 5681 (2004)

    Google Scholar 

  33. Y. Harada, Y. Arai, R. Yasuda, K. Akashi, H. Miyata, K. Kinosita, H. Itoh, Tying a molecular knot with optical tweezers. Nature 399, 6735 (1999)

    Google Scholar 

  34. H. Song, Y. Liu, B. Zhang, K. Tian, P. Zhu, H. Lu, Q. Tang, Study of in vitro RBCs membrane elasticity with AOD scanning optical tweezers. Biomed. Opt. Express 8, 384 (2016)

    Article  Google Scholar 

  35. A. Banerjee, S. Chowdhury, S.K. Gupta, Optical tweezers: autonomous robots for the manipulation of biological cells. IEEE Robot. Autom. Mag. 21, 81 (2014)

    Article  Google Scholar 

  36. F.M. Dickey, S.C. Holswade, Laser beam shaping—theory and techniques (Marcel Dekker, New York, 2000)

    Book  Google Scholar 

  37. J. Kreuzer, Laser light redistribution in illuminating optical signal processing systems (MIT, Cambridge, 1965)

    Google Scholar 

  38. D.L. Shealy, History of beam shaping (CRC Press, New York, 2005)

    Book  Google Scholar 

  39. L.A. Romero, F.M. Dickey, Lossless laser beam shaping. J. Opt. Soc. Am. A 13, 751 (1996)

    Article  ADS  Google Scholar 

  40. M.G. Tarallo, J. Miller, J. Agresti, E. D’Ambrosio, R. DeSalvo, D. Forest, B. Lagrange, J.M. Mackowsky, C. Michel, J.L. Montorio, N. Morgado, L. Pinard, A. Remilleux, B. Simoni, P. Willems, Generation of a flat-top laser beam for gravitational wave detectorsby means of a nonspherical fabry-perot resonator. Appl. Opt. 46, 6648 (2007)

    Article  ADS  Google Scholar 

  41. M. Takamoto, F.-L. Hong, R. Higashi, H. Katori, An optical latticec lock. Nature 435, 321 (2005)

    Article  ADS  Google Scholar 

  42. E. Jane, G. Vidal, W. Dur, P. Zoller, J.I. Cirac, Simulation of quantum dynamics with quantum optical systems. Quantum Inf. Comput. 3, 15 (2003)

    MathSciNet  MATH  Google Scholar 

  43. E.T.F. Rogers, N.I. Zheludev, Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging. J. Opt. 15, 094008 (2013)

    Article  ADS  Google Scholar 

  44. L. Turquet, X. Zang, J.P. Kakko, H. Lipsanen, G. Bautista, M. Kauranen, Demonstration of longitudinally polarized optical needles. Opt. Express (2018). https://doi.org/10.1364/OE.26.027572

    Article  Google Scholar 

  45. X. Li, Y. Cao, N. Tian, L. Fu, M. Gu, Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate. Optica 2, 567 (2015)

    Article  ADS  Google Scholar 

  46. A. Atajanov, A. Zhbanov, S. Yang, Sorting and manipulation of biological cells and the prospects for using optical forces. Micro Nano Syst. Lett. (2018). https://doi.org/10.1186/s40486-018-0064-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Rajesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umamageswari, N., Thiruarul, D., Lavanya, M. et al. Engineering axially polarized sub-wavelength scale focal structures using annular Walsh filter. J Opt 52, 589–596 (2023). https://doi.org/10.1007/s12596-022-01010-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-01010-y

Keywords