Abstract
The intensity distribution in the focal region of a high NA lens for the incident azimuthally polarized doughnut Gaussian beam transmitted through a multi belt spiral phase hologram (MBSPH) is studied on the basis of the vector diffraction theory. Here we report a new method that generates a needle of transversely polarized light beam with sub diffraction beam size of 0.48λ that propagates without divergence over a long distance of about 49λ in free space and designed a dedicated MBSPH to generate multiple focal spot of transversely polarized. The authors also expect such a light needle of transversely polarized beam may find its application when using optical materials or instruments responsive to the transversal field only and to use in multiple optical trapping.
Similar content being viewed by others
References
Cao, J., Chen, Q., Guo, H.: Creation of a controllable three dimensional optical chain by TEM11 Mode radially polarized Laguerre–Gaussian beam. Optik 124, 2033–2036 (2013)
Casaburi, A., Pesce, G., Zemánek, P.: Two- and three-beam interferometric optical tweezers. Opt. Commun. 251, 393–404 (2005)
Crocker, J.C., Grier, D.G.: Microscopic measurement of the pair interaction potential of charge-stabilized colloid. Phys. Rev. Lett. 73(2), 352–355 (1994)
Dorn, R., Quabis, S., Leuchs, G.: Sharper focus for a radially polarized light beam. Phys. Rev. Lett. 91(23), 233901–233904 (2003)
Dufour, P., Piché, M., De Koninck, Y., McCarthy, N.: Two-photon excitation fluorescence microscopy with a high depth of field using an axicon. Appl. Opt. 45, 9246–9252 (2006)
Eriksen, R.L., Mogensen, P.C., Glückstad, J.: Multiple-beam optical tweezers generated by the generalized phase-contrast method. Opt. Lett. 27, 267–269 (2002)
Grosjean, T., Courjon, D., Bainier, C.: Smallest lithographic marks generated by optical focusing systems. Opt. Lett. 32, 976–978 (2007)
Guo, H., Dong, X., Weng, X., Sui, G., Yang, N., Zhuang, S.: Multifocus with small size, uniform intensity, and nearly circular symmetry. Opt. Lett. 36, 2200–2202 (2011)
Hao, B., Leger, J.: Experimental measurement of longitudinal component in the vicinity of focused radially polarized beam. Opt. Express 15(6), 3550–3556 (2007)
Hao, X., Kuang, C.F., Wang, T.T., Liu, X.: Phase encoding for sharper focus of the azimuthally polarized beam. Opt. Lett. 35, 3928–3930 (2010)
Huang, K., Shi, P., Cao, G.W., Li, K., Zhang, X.B., Li, Y.P.: Vector-vortex Bessel–Gauss beams and their tightly focusing properties. Opt. Lett. 36, 888–890 (2011)
Kozawa, Y., Sato, S.: Generation of a radially polarized laser beam by use of a conical Brewster prism. Opt. Lett. 30, 3063–3065 (2005)
Kozawa, Y., Sato, S., et al.: Sharper focal spot formed by higher-order radially polarized laser beams. J. Opt. Soc. Am. A Opt. Image Sci. 24(6), 1793–1798 (2007)
Lalithambigai, K., Suresh, P., Ravi, V., Prabakaran, K., Jaroszewicz, Z., Rajesh, K.B., Anbarasan, P.M., Pillai, T.V.S.: Generation of sub wavelength super-long dark channel using high NA lens axicon. Opt. Lett. 37, 99–101 (2012)
Lalithambigai, K., Anbarasan, P.M., Rajesh, K.B.: Generation of needle of transversely polarized beam using complex spiral phase mask. Opt. Quantum Electron. 47, 1027–1033 (2015)
Lerman, G.M., Levy, U.: Effect of radial polarization and apodization on spot size under tight focusing conditions. Opt. Express 16, 4567–4581 (2008)
Li, J.L., Ueda, K., Musha, M., Zhong, L.X.: Generation of radially polarized mode in Yb fiber laser by using a dual conical prism. Opt. Lett. 31, 2969–2971 (2006)
Lin, J., Chen, R., Yu, H., Jin, P., Cada, M., Ma, Y.: Analysis of sub-wavelength focusing generated by radially polarized doughnut Gaussian beam. Opt. Laser Technol. 64, 242–246 (2014)
Machavariani, G., et al.: Efficient extracavity generation of radially and azimuthally polarized beams. Opt. Lett. 32, 1468–1470 (2007)
Moh, K.J., et al.: Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams. Appl. Opt. 46, 7544–7551 (2007)
Nie, Z., Li, Z., Shi, G., Zhang, X., Wang, Y., Song, Y.: Generation of a sub-wavelength focal spot with a long transversally polarized optical needle using a double-ring-shaped azimuthally polarized beam. Opt. Lasers Eng. 59, 93–97 (2015)
Oron, R., et al.: The formation of laser beams with pure azimuthal or radial polarization. Appl. Phys. Lett. 77, 3322–3324 (2000)
Planchon, T.A., Gao, L., Milkie, D.E., Davidson, M.W., Galbraith, J.A., Galbraith, C.G., Betzig, E.: Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods 8, 417–423 (2011)
Prabakaran, K., Rajesh, K.B., Pillai, T.V.S.: Generation of multiple sub wavelength focal spot segments using radially polarized Bessel Gaussian beam with complex phase filter. Optik 125, 3159–3161 (2014)
Quabis, S., Dorn, R., Eberler, M., Glöckl, O., Leuchs, G.: Focusing light to a tighter spot. Opt. Commun. 179, 1–7 (2000)
Richards, B., Wolf, E.: Electromagnetic diffraction in optical systems II. Structure of the Image field in an aplanatic system. Proc. R. Soc. Lond. Ser. A 253, 358–379 (1959)
Sundaram, C.M., Prabakaran, K., Anbarasan, P.M., Rajesh, K.B., Musthafa, A.M.: Creation of super long transversely polarized optical needle using azimuthally polarized multi-Gaussian beam Chin. Phys. Lett. 33, 064203–064207 (2016)
Tadir, Y., Wright, W.H., Vafa, O., Ord, T., Asch, R.H., Berns, M.W.: Micromanipulation of sperm by a laser generated optical trap. Fertil. Steril. 52, 870–873 (1989)
Tam, J.M., Biran, I., Walt, D.R.: An imaging fiber-based optical tweezer array for microparticle array assembly. Appl. Phys. Lett. 84(21), 4289–4291 (2004)
Tian, B., Pu, J.: Tight focusing of a double-ring-shaped, azimuthally polarized beam. Opt. Lett. 36, 2014–2016 (2011)
Tidwell, S.C., Ford, D.H., Kimura, W.D.: Generating radially polarized beams interferometrically. Appl. Opt. 29, 2234–2239 (1990)
Unger, B.T., Marston, P.L.: Optical levitation of bubbles in water by the radiation pressure of a laser beam: an acoustically quiet levitator. J. Acoust. Soc. Am. 83, 970–975 (1988)
Wright, W.H., Sonek, G., Tadir, Y., Berns, M.W.: Laser trapping in cell biology. IEEE J. Quantum Electron. 26, 2148–2157 (1990)
Yan, S., Yao, B., Zhao, W., Lei, M.: Generation of multiple spherical spots with a radially polarized beam in a 4pi focusing system. J. Opt. Soc. Am. A 27, 2033–2037 (2010)
Yonezawa, K., Kozawa, Y., Sato, S.: Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal. Opt. Lett. 31, 2151–2153 (2006)
Youngworth, K., Brown, T.: Focusing of high numerical aperture cylindrical vector beams. Opt. Express 7, 77–87 (2000)
Yuan, G., Wei, S., Yuan, X.: Non diffracting transversally polarized beam. Opt. Lett. 36, 3479–3481 (2011a)
Yuan, G., Wei, S., Yuan, X.: Generation of nondiffracting quasi-circular polarization beams using an amplitude modulated phase hologram. J. Opt. Soc. Am. A 28, 1716–1720 (2011b)
Zhan, Q., Leger, J.: Focus shaping using cylindrical vector beams. Opt. Express 10, 324–331 (2002)
Zhao, Y., Zhan, Q., Zhang, Y., Li, Y.P.: Creation of a three-dimensional optical chain for controllable particle delivery. Opt. Lett. 30, 848–850 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sundaram, C.M., Prabakaran, K., Rajesh, K.B. et al. Tight focusing properties of phase modulated azimuthally polarized doughnut Gaussian beam. Opt Quant Electron 48, 507 (2016). https://doi.org/10.1007/s11082-016-0765-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11082-016-0765-x