[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Class-guided coupled dictionary learning for multispectral-hyperspectral remote sensing image collaborative classification

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The fine classification of large-scale scenes is becoming more and more important in optical remote sensing applications. As two kinds of typical optical remote sensing data, multispectral images (MSIs) and hyperspectral images (HSIs) have complementary characteristics. The MSI has a large swath and short revisit period, but the number of bands is limited with low spectral resolution, leading to weak separability of between class spectra. Compared with MSI, HSI has hundreds of bands and each of them is narrow in bandwidth, which enable it to have the ability of fine classification, but too long in aspects of revisit period. To make efficient use of their combined advantages, multispectral-hyperspectral remote sensing image collaborative classification has become one of hot topics in remote sensing. To deal with the collaborative classification, most of current methods are unsupervised and only consider the HSI reconstruction as the objective. In this paper, a class-guided coupled dictionary learning method is proposed, which is obviously distinguished from the current methods. Specifically, the proposed method utilizes the labels of training samples to construct discriminative sparse representation coefficient error and classification error as regularization terms, so as to enforce the learned coupled dictionaries to be both representational and discriminative. The learned coupled dictionaries facilitate pixels from the same category have similar sparse represent coefficients, while pixels from different categories have different sparse represent coefficients. The experiments on three pairs of HSI and MSI have shown better classification performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hong D, Gao L, Yokoya N, et al. More diverse means better: Multimodal deep learning meets remote-sensing imagery classification. IEEE Trans Geosci Remote Sens, 2021, 59: 4340–4354

    Article  Google Scholar 

  2. Adão T, Hruška J, Pádua L, et al. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens, 2017, 9: 1110

    Article  Google Scholar 

  3. Gao A F, Rasmussen B, Kulits P, et al. Generalized unsupervised clustering of hyperspectral images of geological targets in the near infrared. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. 2021. 4294–4303

  4. Gao L, Yao D, Li Q, et al. A new low-rank representation based hyperspectral image denoising method for mineral mapping. Remote Sens, 2017, 9: 1145

    Article  Google Scholar 

  5. Castaldi F, Palombo A, Santini F, et al. Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon. Remote Sens Environ, 2016, 179: 54–65

    Article  Google Scholar 

  6. Ibrahim A, Franz B, Ahmad Z, et al. Atmospheric correction for hyperspectral ocean color retrieval with application to the Hyperspectral Imager for the Coastal Ocean (HICO). Remote Sens Environ, 2018, 204: 60–75

    Article  Google Scholar 

  7. Shimoni M, Haelterman R, Perneel C. Hypersectral imaging for military and security applications: Combining myriad processing and sensing techniques. IEEE Geosci Remote Sens Mag, 2019, 7: 101–117

    Article  Google Scholar 

  8. Sun X, Qu Y, Gao L, et al. Target detection through tree-structured encoding for hyperspectral images. IEEE Trans Geosci Remote Sens, 2021, 59: 4233–4249

    Article  Google Scholar 

  9. Xia Z, Gu Y F. Parameter feature extraction for hyperspectral detection of the shallow underwater target. Sci China Tech Sci, 2021, 64: 1092–1100

    Article  Google Scholar 

  10. Gu Y, Liu T, Gao G, et al. Multimodal hyperspectral remote sensing: An overview and perspective. Sci China Inf Sci, 2021, 64: 121301

    Article  Google Scholar 

  11. Liu T, Zhang X, Gu Y. Unsupervised cross-temporal classification of hyperspectral images with multiple geodesic flow kernel learning. IEEE Trans Geosci Remote Sens, 2019, 57: 9688–9701

    Article  Google Scholar 

  12. Gu Y, Liu H, Wang T, et al. Deep feature extraction and motion representation for satellite video scene classification. Sci China Inf Sci, 2020, 63: 140307

    Article  Google Scholar 

  13. Gu Y F, Jin X D, Xiang R Z, et al. UAV-based integrated multi-spectral-LiDAR imaging system and data processing. Sci China Tech Sci, 2020, 63: 1293–1301

    Article  Google Scholar 

  14. Wang Q W, Gu Y F, Yang M, et al. Multi-attribute smooth graph convolutional network for multispectral points classification. Sci China Tech Sci, 2021, 64: 2509–2522

    Article  Google Scholar 

  15. Dian R, Li S, Sun B, et al. Recent advances and new guidelines on hyperspectral and multispectral image fusion. Inf Fusion, 2021, 69: 40–51

    Article  Google Scholar 

  16. Chen Z, Pu H, Wang B, et al. Fusion of hyperspectral and multi-spectral images: A novel framework based on generalization of pan-sharpening methods. IEEE Geosci Remote Sens Lett, 2014, 11: 1418–1422

    Article  Google Scholar 

  17. Selva M, Aiazzi B, Butera F, et al. Hyper-sharpening: A first approach on SIM-GA data. IEEE J Sel Top Appl Earth Observa Remote Sens, 2015, 8: 3008–3024

    Article  Google Scholar 

  18. Dong W, Fu F, Shi G, et al. Hyperspectral image super-resolution via non-negative structured sparse representation. IEEE Trans Image Process, 2016, 25: 2337–2352

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang B, Song H H, Cui H B, et al. Spatial and spectral image fusion using sparse matrix factorization. IEEE Trans Geosci Remote Sens, 2014, 52: 1693–1704

    Article  Google Scholar 

  20. Liu J, Wu Z, Xiao L, et al. A truncated matrix decomposition for hyperspectral image super-resolution. IEEE Trans Image Process, 2020, 29: 8028–8042

    Article  MathSciNet  Google Scholar 

  21. Veganzones M A, Simoes M, Licciardi G, et al. Hyperspectral superresolution of locally low rank images from complementary multi-source data. IEEE Trans Image Process, 2016, 25: 274–288

    Article  MathSciNet  MATH  Google Scholar 

  22. Dian R, Li S, Fang L, et al. Nonlocal sparse tensor factorization for semiblind hyperspectral and multispectral image fusion. IEEE Trans Cybern, 2020, 50: 4469–4480

    Article  Google Scholar 

  23. Li S, Dian R, Fang L, et al. Fusing hyperspectral and multispectral images via coupled sparse tensor factorization. IEEE Trans Image Process, 2018, 27: 4118–4130

    Article  MathSciNet  MATH  Google Scholar 

  24. Xu Y, Wu Z, Chanussot J, et al. Nonlocal coupled tensor CP decomposition for hyperspectral and multispectral image fusion. IEEE Trans Geosci Remote Sens, 2020, 58: 348–362

    Article  Google Scholar 

  25. Xu Y, Wu Z, Chanussot J, et al. Nonlocal patch tensor sparse representation for hyperspectral image super-resolution. IEEE Trans Image Process, 2019, 28: 3034–3047

    Article  MathSciNet  MATH  Google Scholar 

  26. Dian R, Li S, Fang L. Learning a low tensor-train rank representation for hyperspectral image super-resolution. IEEE Trans Neural Netw Learn Syst, 2019, 30: 2672–2683

    Article  MathSciNet  Google Scholar 

  27. Xie Q, Zhou M H, Zhao Q, et al. Multispectral and hyperspectral image fusion by MS/HS fusion net. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, 2019. 1585–1594

  28. Xie W, Lei J, Cui Y, et al. Hyperspectral pansharpening with deep priors. IEEE Trans Neural Netw Learn Syst, 2020, 31: 1529–1543

    Article  MathSciNet  Google Scholar 

  29. Dian R, Li S, Kang X. Regularizing hyperspectral and multispectral image fusion by CNN denoiser. IEEE Trans Neural Netw Learn Syst, 2021, 32: 1124–1135

    Article  Google Scholar 

  30. Zheng K, Gao L, Liao W, et al. Coupled convolutional neural network with adaptive response function learning for unsupervised hyperspectral super resolution. IEEE Trans Geosci Remote Sens, 2021, 59: 2487–2502

    Article  Google Scholar 

  31. Yang J, Zhao Y Q, Chan J. Hyperspectral and multispectral image fusion via deep two-branches convolutional neural network. Remote Sens, 2018, 10: 800

    Article  Google Scholar 

  32. Wang W, Zeng W H, Huang Y, et al. Deep blind hyperspectral image fusion. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, 2019. 4150–4159

  33. Han X H, Zheng Y Q, Chen Y W. Multi-level and multi-scale spatial and spectral fusion CNN for hyperspectral image super-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. Seoul, 2019. 4330–4339

  34. Arad B, Ben-Shahar O. Sparse recovery of hyperspectral signal from natural RGB images. In: Leibe B, Matas J, Sebe N, et al, eds. European Conference on Computer Vision. Cham: Springer, 2016. 19–34

    Google Scholar 

  35. Chen Y, Zhao Y Q, Chan J C W. Spectral super-resolution for multispectral image based on spectral improvement strategy and spatial preservation strategy. IEEE Trans Geosci Remote Sens, 2019, 57: 9010–9024

    Article  Google Scholar 

  36. Fotiadou K, Tsagkatakis G, Tsakalides P. Spectral super resolution of hyperspectral images via coupled dictionary learning. IEEE Trans Geosci Remote Sens, 2019, 57: 2777–2797

    Article  Google Scholar 

  37. Gao L, Hong D, Yao J, et al. Spectral superresolution of multispectral imagery with joint sparse and low-rank learning. IEEE Trans Geosci Remote Sens, 2021, 59: 2269–2280

    Article  Google Scholar 

  38. Deng L, Sun J, Chen Y, et al. M2H-Net: A reconstruction method for hyperspectral remotely sensed imagery. ISPRS J Photogrammetry Remote Sens, 2021, 173: 323–348

    Article  Google Scholar 

  39. Li T, Gu Y. Progressive spatial-spectral joint network for hyperspectral image reconstruction. IEEE Trans Geosci Remote Sens, 2022, 60: 1–14

    Google Scholar 

  40. He J, Li J, Yuan Q, et al. Spectral response function-guided deep optimization-driven network for spectral super-resolution. IEEE Trans Neural Netw Learn Syst, 2021, 1–15

  41. Sun X, Zhang L, Yang H, et al. Enhancement of spectral resolution for remotely sensed multispectral image. IEEE J Sel Top Appl Earth Observa Remote Sens, 2015, 8: 2198–2211

    Article  Google Scholar 

  42. Liu T, Gu Y, Chanussot J, et al. Multimorphological superpixel model for hyperspectral image classification. IEEE Trans Geosci Remote Sens, 2017, 55: 6950–6963

    Article  Google Scholar 

  43. Gu Y, Liu T, Li J. Superpixel tensor model for spatial-spectral classification of remote sensing images. IEEE Trans Geosci Remote Sens, 2019, 57: 4705–4719

    Article  Google Scholar 

  44. Gu Y, Wang C, You D, et al. Representative multiple kernel learning for classification in hyperspectral imagery. IEEE Trans Geosci Remote Sens, 2012, 50: 2852–2865

    Article  Google Scholar 

  45. Gu Y, Liu T, Jia X, et al. Nonlinear multiple kernel learning with multiple-structure-element extended morphological profiles for hyperspectral image classification. IEEE Trans Geosci Remote Sens, 2016, 54: 3235–3247

    Article  Google Scholar 

  46. Liu T, Gu Y, Jia X, et al. Class-specific sparse multiple kernel learning for spectral-spatial hyperspectral image classification. IEEE Trans Geosci Remote Sens, 2016, 54: 7351–7365

    Article  Google Scholar 

  47. Wang Q, Gu Y, Tuia D. Discriminative multiple kernel learning for hyperspectral image classification. IEEE Trans Geosci Remote Sens, 2016, 54: 3912–3927

    Article  Google Scholar 

  48. Hong D, Gao L, Yao J, et al. Graph convolutional networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens, 2021, 59: 5966–5978

    Article  Google Scholar 

  49. Cai J F, Candès E J, Shen Z. A singular value thresholding algorithm for matrix completion. SIAM J Optim, 2010, 20: 1956–1982

    Article  MathSciNet  MATH  Google Scholar 

  50. Hong D, Yokoya N, Chanussot J, et al. CoSpace: Common subspace learning from hyperspectral-multispectral correspondences. IEEE Trans Geosci Remote Sens, 2019, 57: 4349–4359

    Article  Google Scholar 

  51. Gong B Q, Shi Y, Sha F, et al. Geodesic flow kernel for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. Providence, 2012. 2066–2073

  52. Pan S J, Tsang I W, Kwok J T, et al. Domain adaptation via transfer component analysis. IEEE Trans Neural Netw, 2011, 22: 199–210

    Article  Google Scholar 

  53. Fernando B, Habrard A, Sebban M, et al. Unsupervised visual domain adaptation using subspace alignment. In: Proceedings of the IEEE/CVF Conference on Computer Vision (ICCV). 2013. Sydney, 2960–2967

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YanFeng Gu.

Additional information

This work was supported by the National Natural Youth Science Foundation Project (Grant No. 62001142), the Key International Cooperation Project (Grant No. 61720106002), the Distinguished Young Scholars of National Natural Science Foundation of China (Grant No. 62025107), and Heilongjiang Postdoctoral Fund (Grant No. LBH-Z20068).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Gu, Y. & Jia, X. Class-guided coupled dictionary learning for multispectral-hyperspectral remote sensing image collaborative classification. Sci. China Technol. Sci. 65, 744–758 (2022). https://doi.org/10.1007/s11431-021-1978-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-021-1978-6

Keywords

Navigation