Abstract
Since the advent of hyperspectral remote sensing in the 1980s, it has made important achievements in aerospace and aviation field and been applied in many fields. Conventional hyperspectral imaging spectrometer extends the number of spectral bands to dozens or hundreds, and provides spatial distribution of the reflected solar radiation from the scene of observation at the same time. Nowadays, with the fast development of new technology in the fields of information and photoelectricity sensing, and the popularity of unmanned aerial vehicle, hyperspectral remote sensing imaging presents the new trends of multimodality and acquires integration information while keeping high or very-high spectral resolution, especially, high temporal even real time sensing and stereo sensing. Therefore, three important modes of hyperspectral imaging come into existence: (1) multitemporal hyperspectral imaging, which refers to the observation of same region at different dates; (2) hyperspectral video imaging, which captures full frame spectral images in real-time; (3) hyperspectral stereo imaging, which obtains the full dimension information (including 2D image, elevation, and spectra) of observed scene. Along this perspective, firstly, the current researches on hyperspectral remote sensing and image processing are briefly reviewed, and then, comprehensive descriptions of the aforementioned three main hyperspectral imaging modes are carried out from the following four aspects: fundamental principle of new mode of hyperspectral imaging, corresponding scientific data acquisition, data processing and application, and potential challenges in data representation, feature learning and interpretation. Through the analysis of development trend of hyperspectral imaging and current research situation, we hope to provide a direction for future research on multimodal hyperspectral remote sensing.
Similar content being viewed by others
References
Green R O, Chrien T G, Enmark H T. First results from the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens Environ, 1987, 44: 127–143
Sankey T T, McVay J, Swetnam T L, et al. UAV hyperspectral and lidar data and their fusion for arid and semi-arid land vegetation monitoring. Remote Sens Ecol Conserv, 2018, 4: 20–33
Govender M, Chetty K, Bulcock H. A review of hyperspectral remote sensing and its application in vegetation and water resource studies. Water Sa, 2007, 33: 145–152
Luo B, Yang C, Chanussot J, et al. Crop yield estimation based on unsupervised linear unmixing of multidate hyperspectral imagery. IEEE Trans Geosci Remote Sens, 2012, 51: 162–173
Morier T, Cambouris A N, Chokmani K. In-season nitrogen status assessment and yield estimation using hyperspectral vegetation indices in a potato crop. Agronomy J, 2015, 107: 1295–1309
Moroni M, Lupo E, Marra E, et al. Hyperspectral image analysis in environmental monitoring: setup of a new tunable filter platform. Procedia Environ Sci, 2013, 19: 885–894
Honkavaara E, Hakala T, Markelin L, et al. Autonomous hyperspectral UAS photogrammetry for environmental monitoring applications. ISPRS Archives, 2014, XL-1: 155–159
Luft L, Neumann C, Freude M, et al. Hyperspectral modeling of ecological indicators — a new approach for monitoring former military training areas. Ecol Indicators, 2014, 46: 264–285
Mucher C A, Kooistra L, Vermeulen M, et al. Quantifying structure of Natura 2000 heathland habitats using spectral mixture analysis and segmentation techniques on hyperspectral imagery. Ecol Indic, 2013, 33: 71–81
Briottet X, Boucher Y, Dimmeler A, et al. Military applications of hyperspectral imagery. In: Proceedings of SPIE, Defense and Security Symposium, Orlando, 2006. 6239: 62390B
Kastek M, Piatkowski T, Dulski R, et al. Multispectral and hyperspectral measurements of soldier’s camouflage equipment. In: Proceedings of SPIE, Defense, Security, and Sensing, Baltimore, 2012. 8382: 83820K
Richards J A, Jia X. Remote Sensing Digital Image Analysis. Berlin: Springer, 1999
Tong Q, Xue Y, Zhang L. Progress in hyperspectral remote sensing science and technology in china over the past three decades. IEEE J Sel Top Appl Earth Observ Remote Sens, 2014, 7: 70–91
Gerhart T, Sunu J, Lieu L, et al. Detection and tracking of gas plumes in LWIR hyperspectral video sequence data. In: Proceedings of SPIE, Defense, Security, and Sensing, Baltimore, 2013. 8743: 87430J
Tochon G, Chanussot J, Gilles J, et al. Gas plume detection and tracking in hyperspectral video sequences using binary partition trees. In: Proceedings of IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lausanne, 2014. 1–4
Shaw G, Manolakis D. Signal processing for hyperspectral image exploitation. IEEE Signal Process Mag, 2002, 19: 12–16
Stein D W J, Beaven S G, Hoff L E, et al. Anomaly detection from hyperspectral imagery. IEEE Signal Process Mag, 2002, 19: 58–69
Manolakis D, Shaw G. Detection algorithms for hyperspectral imaging applications. IEEE Signal Process Mag, 2002, 19: 29–43
Keshava N, Mustard J F. Spectral unmixing. IEEE Signal Process Mag, 2002, 19: 44–57
Landgrebe D. Hyperspectral image data analysis. IEEE Signal Process Mag, 2002, 19: 17–28
Camps-Valls G, Tuia D, Bruzzone L, et al. Advances in hyperspectral image classification. IEEE Signal Process Mag, 2014, 31: 45–54
Manolakis D, Truslow E, Pieper M, et al. Detection algorithms in hyperspectral imaging systems: an overview of practical algorithms. IEEE Signal Process Mag, 2014, 31: 24–33
Nasrabadi N M. Hyperspectral target detection: an overview of current and future challenges. IEEE Signal Process Mag, 2014, 31: 34–44
Li W, Du Q. A survey on representation-based classification and detection in hyperspectral remote sensing imagery. Pattern Recognit Lett, 2015, 83: 115–123
Arce G R, Brady D J, Carin L, et al. Compressive coded aperture spectral imaging: an introduction. IEEE Signal Process Mag, 2014, 31: 105–115
Willett R, Duarte M, Davenport M, et al. Sparsity and structure in hyperspectral imaging: sensing, reconstruction, and target detection. IEEE Signal Process Mag, 2014, 31: 116–126
Sami ul H Q, Tao L M, Sun F C, et al. A fast and robust sparse approach for hyperspectral data classification using a few labeled samples. IEEE Trans Geosci Remote Sens, 2012, 50: 2287–2302
Chen Y, Nasrabadi N M, Tran T D. Sparse representation for target detection in hyperspectral imagery. IEEE J Sel Top Appl Earth Observ Remote Sens, 2011, 5: 629–640
Chen J, Jiao L. Hyperspectral imagery classification using local collaborative representation. Int J Remote Sens, 2015, 36: 734–748
Li W, Du Q. Collaborative representation for hyperspectral anomaly detection. IEEE Trans Geosci Remote Sens, 2015, 53: 1463–1474
Zhang H, Li J, Huang Y, et al. A nonlocal weighted joint sparse representation classification method for hyperspectral imagery. IEEE J Sel Top Appl Earth Observ Remote Sens, 2014, 7: 2056–2065
Li J, Zhang H, Zhang L, et al. Hyperspectral anomaly detection by the use of background joint sparse representation. IEEE J Sel Top Appl Earth Observ Remote Sens, 2015, 8: 2523–2533
Chen Y, Nasrabadi N M, Tran T D. Simultaneous joint sparsity model for target detection in hyperspectral imagery. IEEE Geosci Remote Sens Lett, 2011, 8: 676–680
Li W, Du Q. Joint within-class collaborative representation for hyperspectral image classification. IEEE J Sel Top Appl Earth Observ Remote Sens, 2014, 7: 2200–2208
Li J, Zhang H, Huang Y, et al. Hyperspectral image classification by nonlocal joint collaborative representation with a locally adaptive dictionary. IEEE Trans Geosci Remote Sens, 2014, 52: 3707–3719
Chen Y, Nasrabadi N M, Tran T D. Hyperspectral image classification via kernel sparse representation. IEEE Trans Geosci Remote Sens, 2013, 51: 217–231
Liu J, Wu Z, Wei Z, et al. Spatial-spectral kernel sparse representation for hyperspectral image classification. IEEE J Sel Top Appl Earth Observ Remote Sens, 2013, 6: 2462–2471
Li W, Du Q, Xiong M. Kernel collaborative representation with Tikhonov regularization for hyperspectral image classification. IEEE Geosci Remote Sens Lett, 2015, 12: 48–52
Li J Y, Zhang H Y, Zhang L P. Column-generation kernel nonlocal joint collaborative representation for hyperspectral image classification. ISPRS J Photogrammetry Remote Sens, 2014, 94: 25–36
Camps-Valls G, Bruzzone L. Kernel-based methods for hyperspectral image classification. IEEE Trans Geosci Remote Sens, 2005, 43: 1351–1362
Mountrakis G, Im J, Ogole C. Support vector machines in remote sensing: a review. ISPRS J Photogrammetry Remote Sens, 2011, 66: 247–259
Niazmardi S, Demir B, Bruzzone L, et al. Multiple kernel learning for remote sensing image classification. IEEE Trans Geosci Remote Sens, 2018, 56: 1425–1443
Gu Y, Chanussot J, Jia X, et al. Multiple kernel learning for hyperspectral image classification: a review. IEEE Trans Geosci Remote Sens, 2017, 55: 6547–6565
Gu Y, Wang C, You D, et al. Representative multiple kernel learning for classification in hyperspectral imagery. IEEE Trans Geosci Remote Sens, 2012, 50: 2852–2865
Gu Y F, Wang Q W, Jia X P, et al. A novel MKL model of integrating LiDAR data and MSI for urban area classification. IEEE Trans Geosci Remote Sens, 2015, 53: 5312–5326
Gu Y, Wang Q, Wang H, et al. Multiple kernel learning via low-rank nonnegative matrix factorization for classification of hyperspectral imagery. IEEE J Sel Top Appl Earth Observ Remote Sens, 2014, 8: 2739–2751
Wang Q, Gu Y, Tuia D. Discriminative multiple kernel learning for hyperspectral image classification. IEEE Trans Geosci Remote Sens, 2016, 54: 3912–3927
Liu T, Gu Y, Jia X, et al. Class-specific sparse multiple kernel learning for spectral-spatial hyperspectral image classification. IEEE Trans Geosci Remote Sens, 2016, 54: 7351–7365
Rakotomamonjy A, Bach F, Stephane C, et al. SimpleMKL. J Mach Learn Res, 2008, 9: 2491–2521
Gu Y, Gao G, Zuo D, et al. Model selection and classification with multiple kernel learning for hyperspectral images via sparsity. IEEE J Sel Top Appl Earth Observ Remote Sens, 2014, 7: 2119–2130
Gu Y, Wang Q, Xie B. Multiple kernel sparse representation for airborne LiDAR data classification. IEEE Trans Geosci Remote Sens, 2016, 55: 1085–1105
Gu Y, Liu H. Sample-screening MKL method via boosting strategy for hyperspectral image classification. Neurocomputing, 2015, 173: 1630–1639
Wang Y, Gu Y, Gao G, et al. Hyperspectral image classification with multiple kernel Boosting algorithm. In: Proceedings of IEEE International Conference on Image Processing, Paris, 2015. 5047–5051
Gu Y, Liu T, Jia X, et al. Nonlinear multiple kernel learning with multiple-structure-element extended morphological profiles for hyperspectral image classification. IEEE Trans Geosci Remote Sens, 2016, 54: 3235–3247
Lunga D, Prasad S, Crawford M M, et al. Manifold-learning-based feature extraction for classification of hyperspectral data: a review of advances in manifold learning. IEEE Signal Process Mag, 2014, 31: 55–66
Hong D, Yokoya N, Zhu X X. Learning a robust local manifold representation for hyperspectral dimensionality reduction. IEEE J Sel Top Appl Earth Observ Remote Sens, 2017, 10: 2960–2975
He J, Zhang L, Wang Q, et al. Using diffusion geometric coordinates for hyperspectral imagery representation. IEEE Geosci Remote Sens Lett, 2009, 6: 767–771
Mohan A, Sapiro G, Bosch E. Spatially coherent nonlinear dimensionality reduction and segmentation of hyperspectral images. IEEE Geosci Remote Sens Lett, 2007, 4: 206–210
Ma L, Zhang X, Yu X, et al. Spatial regularized local manifold learning for classification of hyperspectral images. IEEE J Sel Top Appl Earth Observ Remote Sens, 2015, 9: 609–624
Ma L, Crawford M M, Yang X, et al. Local-manifold-learning-based graph construction for semisupervised hyperspectral image classification. IEEE Trans Geosci Remote Sensing, 2014, 53: 2832–2844
Ziemann A K, Messinger D W. An adaptive locally linear embedding manifold learning approach for hyperspectral target detection. In: Proceedings of SPIE Defense and Security, Baltimore, 2015. 9472: 94720O
Ziemann A K, Theiler J, Messinger D W. Hyperspectral target detection using manifold learning and multiple target spectra. In: Proceedings of IEEE Applied Imagery Pattern Recognition Workshop (AIPR), Washington, 2015. 1–7
Heylen R, Scheunders P. Calculation of geodesic distances in nonlinear mixing models: application to the generalized bilinear model. IEEE Geosci Remote Sens Lett, 2012, 9: 644–648
Chi J, Crawford M M. Selection of landmark points on nonlinear manifolds for spectral unmixing using local homogeneity. Geosci Remote Sens Lett IEEE, 2012, 10: 711–715
Chen Y, Lin Z, Zhao X, et al. Deep learning-based classification of hyperspectral data. IEEE J Sel Top Appl Earth Observ Remote Sens, 2014, 7: 2094–2107
Gao L, Gu D, Zhuang L, et al. Combining t-distributed stochastic neighbor embedding with convolutional neural networks for hyperspectral image classification. IEEE Geosci Remote Sens Lett, 2020, 17: 1368–1372
Zhang L, Zhang L, Du B. Deep learning for remote sensing data: a technical tutorial on the state of the art. IEEE Geosci Remote Sens Mag, 2016, 4: 22–40
Audebert N, Le Saux B, Lefevre S. Deep learning for classification of hyperspectral data: a comparative review. IEEE Geosci Remote Sens Mag, 2019, 7: 159–173
Rasti B, Hong D, Hang R, et al. Feature extraction for hyperspectral imagery: the evolution from shallow to deep. IEEE Geosci Remote Sens Mag, 2020. doi: https://doi.org/10.1109/MGRS.2020.2979764
Ghamisi P, Maggiori E, Li S T, et al. New frontiers in spectral-spatial hyperspectral image classification: the latest advances based on mathematical morphology, markov random fields, segmentation, sparse representation, and deep learning. IEEE Geosci Remote Sens Mag, 2018, 6: 10–43
Xu F, Hu C, Li J, et al. Special focus on deep learning in remote sensing image processing. Sci China Inf Sci, 2020, 63: 140300
Li J, Li Y F, He L, et al. Spatio-temporal fusion for remote sensing data: an overview and new benchmark. Sci China Inf Sci, 2020, 63: 140301
Li Y F, Li J, He L, et al. A new sensor bias-driven spatio-temporal fusion model based on convolutional neural networks. Sci China Inf Sci, 2020, 63: 140302
Hou X Y, Ao W, Song Q, et al. FUSAR-Ship: building a high-resolution SAR-AIS matchup dataset of Gaofen-3 for ship detection and recognition. Sci China Inf Sci, 2020, 63: 140303
Cui K, Hu C, Wang R, et al. Deep-learning-based extraction of the animal migration patterns from weather radar images. Sci China Inf Sci, 2020, 63: 140304
He N J, Fang L Y, Plaza A. Hybrid first and second order attention Unet for building segmentation in remote sensing images. Sci China Inf Sci, 2020, 63: 140305
Liu X B, Qiao Y L, Xiong Y H, et al. Cascade conditional generative adversarial nets for spatial-spectral hyperspectral sample generation. Sci China Inf Sci, 2020, 63: 140306
Gu Y F, Liu H, Wang T F, et al. Deep feature extraction and motion representation for satellite video scene classification. Sci China Inf Sci, 2020, 63: 140307
Lahat D, Adali T, Jutten C. Multimodal data fusion: an overview of methods, challenges, and prospects. Proc IEEE, 2015, 103: 1449–1477
Dalla M M, Prasad S, Pacifici F, et al. Challenges and opportunities of multimodality and data fusion in remote sensing. Proc IEEE, 2015, 103: 1585–1601
Gomez-Chova L, Tuia D, Moser G, et al. Multimodal classification of remote sensing images: a review and future directions. Proc IEEE, 2015, 103: 1560–1584
Camps-Valls G, Gomez-Chova L, Munoz-Mari J, et al. Composite kernels for hyperspectral image classification. IEEE Geosci Remote Sens Lett, 2006, 3: 93–97
Tuia D, Ratle F, Pozdnoukhov A, et al. Multisource composite kernels for urban-image classification. IEEE Geosci Remote Sens Lett, 2010, 7: 88–92
Volpi M, Camps-Valls G, Tuia D. Spectral alignment of multi-temporal cross-sensor images with automated kernel canonical correlation analysis. ISPRS J Photogrammetry Remote Sens, 2015, 107: 50–63
Tuia D, Camps-Valls G, Matasci G, et al. Learning relevant image features with multiple-kernel classification. IEEE Trans Geosci Remote Sens, 2010, 48: 3780–3791
Liu W, Qin R. A multikernel domain adaptation method for unsupervised transfer learning on cross-source and cross-region remote sensing data classification. IEEE Trans Geosci Remote Sens, 2020, 58: 4279–4289
Li S, Yin H, Fang L. Remote sensing image fusion via sparse representations over learned dictionaries. IEEE Trans Geosci Remote Sens, 2013, 51: 4779–4789
Cheng M, Wang C, Li J. Sparse representation based pansharpening using trained dictionary. IEEE Geosci Remote Sens Lett, 2014, 11: 293–297
Ghahremani M, Ghassemian H. Remote sensing image fusion using ripplet transform and compressed sensing. IEEE Geosci Remote Sens Lett, 2015, 12: 502–506
Zhao C, Gao X, Emery W J, et al. An integrated spatio-spectral-temporal sparse representation method for fusing remote-sensing images with different resolutions. IEEE Trans Geosci Remote Sens, 2018, 56: 1–13
Vargas E, Arguello H, Tourneret J Y. Spectral image fusion from compressive measurements using spectral unmixing and a sparse representation of abundance maps. IEEE Trans Geosci Remote Sens, 2019, 57: 5043–5053
Romero A, Gatta C, Camps-Valls G. Unsupervised deep feature extraction for remote sensing image classification. IEEE Trans Geosci Remote Sens, 2015, 54: 1–14
Tuia D, Flamary R, Courty N. Multiclass feature learning for hyperspectral image classification: sparse and hierarchical solutions. ISPRS J Photogrammetry Remote Sens, 2015, 105: 272–285
Zhang H, Ni W, Yan W, et al. Registration of multimodal remote sensing image based on deep fully convolutional neural network. IEEE J Sel Top Appl Earth Observ Remote Sens, 2019, 12: 3028–3042
Benedetti P, Ienco D, Gaetano R, et al. M3 Fusion: a deep learning architecture for multiscale multimodal multitemporal satellite data fusion. IEEE J Sel Top Appl Earth Observ Remote Sens, 2018, 11: 4939–4949
Tuia D, Volpi M, Trolliet M, et al. Semisupervised manifold alignment of multimodal remote sensing images. IEEE Trans Geosci Remote Sens, 2014, 52: 7708–7720
Matasci G, Volpi M, Kanevski M, et al. Semisupervised transfer component analysis for domain adaptation in remote sensing image classification. IEEE Trans Geosci Remote Sens, 2015, 53: 3550–3564
Chi M, Sun Z, Qin Y, et al. A novel methodology to label urban remote sensing images based on location-based social media photos. Proc IEEE, 2017, 105: 1926–1936
Li J, Benediktsson J A, Zhang B, et al. Spatial technology and social media in remote sensing: a survey. Proc IEEE, 2017, 105: 1855–1864
Wang H, Skau E, Krim H, et al. Fusing heterogeneous data: a case for remote sensing and social media. IEEE Trans Geosci Remote Sens, 2018, 56: 6956–6968
Qi L, Li J, Wang Y, et al. Urban observation: integration of remote sensing and social media data. IEEE J Sel Top Appl Earth Observ Remote Sens, 2019, 12: 4252–4264
Singh A. Digital change detection techniques using remotely-sensed data. Int J Remote Sens, 1989, 10: 989–1003
Heo J, Fitzhugh T W. A standardized radiometric normalization method for change detection using remotely sensed imagery. Photogramm Eng Remote Sens, 2000, 66: 173–181
Schowengerdt R A. Remote Sensing: Models and Methods for Image Processing. 2nd ed. New York: Academic, 1997
Gonzalez R, Woods R. Digital Image Processing. 2nd ed. Englewood Cliffs: Prentice-Hall, 2002
Inamdar S, Bovolo F, Bruzzone L, et al. Multidimensional probability density function matching for preprocessing of multitemporal remote sensing images. IEEE Trans Geosci Remote Sens, 2008, 46: 1243–1252
Gorretta N, Hadoux X, Jay S. Multi-temporal hyperspectral data classification without explicit reflectance correction. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, 2015. 4228–4231
Hemissi S, Farah I R, Ettabaa K S, et al. A robust evidential fisher discriminant for multi-temporal hyperspectral images classification. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, 2012. 4275–4278
Jin H, Li P, Fan W. Land cover classification using multitemporal CHRIS/PROBA images and multitemporal texture. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Boston, 2008. 742–745
Prasad S, Bruce L M, Kalluri H. A robust multi-classifier decision fusion framework for hyperspectral, multi-temporal classification. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Boston, 2008, 273–276
Tuia D, Persello C, Bruzzone L. Domain adaptation for the classification of remote sensing data: an overview of recent advances. IEEE Geosci Remote Sens Mag, 2016, 4: 41–57
Ye M, Qian Y, Zhou J, et al. Dictionary learning-based feature-level domain adaptation for cross-scene hyperspectral image classification. IEEE Trans Geosci Remote Sens, 2017, 55: 1544–1562
Kim W, Crawford M M. Adaptive classification for hyperspectral image data using manifold regularization kernel machines. IEEE Trans Geosci Remote Sens, 2010, 48: 4110–4121
Yang H L, Crawford M M. Spectral and spatial proximity-based manifold alignment for multitemporal hyperspectral image classification. IEEE Trans Geosci Remote Sens, 2016, 54: 51–64
Yang H L, Crawford M M. Domain adaptation with preservation of manifold geometry for hyperspectral image classification. IEEE J Sel Top Appl Earth Observ Remote Sens, 2016, 9: 543–555
Nielsen A A, Canty M J. Kernel principal component and maximum autocorrelation factor analyses for change detection. In: Proceedings of SPIE, Remote Sensing, Berlin, 2009. 7477: 74770T
Nielsen A A. The regularized iteratively reweighted MAD method for change detection in multi- and hyperspectral data. IEEE Trans Image Process, 2007, 16: 463–478
Xia J, Yokoya N, Iwasaki A. Ensemble of transfer component analysis for domain adaptation in hyperspectral remote sensing image classification. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, 2017. 4762–4765
Samat A, Gamba P, Abuduwaili J, et al. Geodesic flow kernel support vector machine for hyperspectral image classification by unsupervised subspace feature transfer. Remote Sens, 2016, 8: 234
Gao G, Gu Y. Tensorized principal component alignment: a unified framework for multimodal high-resolution images classification. IEEE Trans Geosci Remote Sens, 2018, 57: 46–61
Li T, Gu Y. Joint tensor subspace alignment on multi-angular remote sensing image. In: Proceedings of IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, 2018. 1–5
Qin Y, Bruzzone L, Li B. Tensor alignment based domain adaptation for hyperspectral image classification. IEEE Trans Geosci Remote Sens, 2019, 57: 9290–9307
Persello C, Bruzzone L. Active learning for domain adaptation in the supervised classification of remote sensing images. IEEE Trans Geosci Remote Sens, 2012, 50: 4468–4483
Banerjee B, Bovolo F, Bhattacharya A, et al. A novel graph-matching-based approach for domain adaptation in classification of remote sensing image pair. IEEE Trans Geosci Remote Sens, 2015, 53: 4045–4062
Tuia D, Munoz-Mari J, Gomez-Chova L, et al. Graph matching for adaptation in remote sensing. IEEE Trans Geosci Remote Sens, 2013, 51: 329–341
Jacobs J P, Thoonen G, Tuia D, et al. Domain adaptation with hidden Markov random fields. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, 2013. 3112–3115
Ettabaa K S, Hamdi M A, Salem R B. SVM for hyperspectral images classification based on 3D spectral signature. In: Proceedings of International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Sousse, 2014. 42–47
Hemissi S, Farah I R, Ettabaa K S, et al. Multi-spectro-temporal analysis of hyperspectral imagery based on 3-D spectral modeling and multilinear algebra. IEEE Trans Geosci Remote Sens, 2012, 51: 199–216
Teke M, Yardimci Y. Classification of crops using multitemporal hyperion images. In: Proceedings of IEEE International Conference on Agro-Geoinformatics, Istanbul, 2015. 282–287
Othman E, Bazi Y, Alajlan N, et al. Three-layer convex network for domain adaptation in multitemporal VHR images. IEEE Geosci Remote Sens Lett, 2016, 13: 354–358
Elshamli A, Taylor G W, Berg A, et al. Domain adaptation using representation learning for the classification of remote sensing images. IEEE J Sel Top Appl Earth Observ Remote Sens, 2017, 99: 1–12
Yang J, Zhao Y Q, Chan J C W. Learning and transferring deep joint spectral-spatial features for hyperspectral classification. IEEE Trans Geosci Remote Sens, 2017, 55: 4729–4742
Hong D, Yokoya N, Ge N, et al. Learnable manifold alignment (LeMA): a semi-supervised cross-modality learning framework for land cover and land use classification. ISPRS J Photogrammetry Remote Sens, 2019, 147: 193–205
Tuia D, Campsvalls G. Kernel manifold alignment for domain adaptation. Plos One, 2016, 11: e0148655
Li X, Zhang L, Du B, et al. On gleaning knowledge from cross domains by sparse subspace correlation analysis for hyper-spectral image classification. IEEE Trans Geosci Remote Sens, 2019, 57: 3204–3220
Qin Y, Bruzzone L, Li B, et al. Cross-domain collaborative learning via cluster canonical correlation analysis and random walker for hyperspectral image classification. IEEE Trans Geosci Remote Sens, 2019, 57: 3952–3966
Hong D, Yokoya N, Chanussot J, et al. Cospace: common subspace learning from hyperspectral-multispectral correspondences. IEEE Trans Geosci Remote Sens, 2019, 57: 4349–4359
Liu T, Zhang X, Gu Y. Unsupervised cross-temporal classification of hyperspectral images with multiple geodesic flow kernel learning. IEEE Trans Geosci Remote Sens, 2019, 57: 9688–9701
Gong B, Shi Y, Sha F, et al. Geodesic flow kernel for unsupervised domain adaptation. In: Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, 2012. 2066–2073
Liu S, Bruzzone L, Bovolo F, et al. Sequential spectral change vector analysis for iteratively discovering and detecting multiple changes in hyperspectral images. IEEE Trans Geosci Remote Sens, 2015, 53: 4363–4378
Liu S, Bruzzone L, Bovolo F, et al. Unsupervised multitemporal spectral unmixing for detecting multiple changes in hyper-spectral images. IEEE Trans Geosci Remote Sens, 2016, 54: 2733–2748
Cesmeci D, Karaca A C, Erturk A, et al. Hyperspectral change detection by multi-band census transform. In: Proceedings of IEEE Geoscience and Remote Sensing Symposium (IGARSS), Quebec, 2014. 2969–2972
Wu C, Zhang L, Du B. Hyperspectral anomaly change detection with slow feature analysis. Neurocomputing, 2015, 151: 175–187
Du B, Ru L, Wu C, et al. Unsupervised deep slow feature analysis for change detection in multi-temporal remote sensing images. IEEE Trans Geosci Remote Sens, 2019, 57: 9976–9992
Yuan Y, Lv H, Lu X. Semi-supervised change detection method for multi-temporal hyperspectral images. Neurocomputing, 2015, 148: 363–375
Wu C, Zhang L, Du B. Targeted change detection for stacked multi-temporal hyperspectral image. In: Proceedings of IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Shanghai, 2012. 1–4
Hazel G G. Object-level change detection in spectral imagery. IEEE Trans Geosci Remote Sens, 2001, 39: 553–561
Messinger D W, Richardson M, Casey J. Analysis of a multitemporal hyperspectral dataset over a common target scene. In: Proceedings of SPIE, Defense and Security Symposium, Orlando, 2006. 6233: 62331I
Sun Y, Zhang X, Shuai T, et al. Radiometric normalization of multitemporal hyperspectral satellite images. In: Proceedings of IEEE Geoscience and Remote Sensing Symposium (IGARSS), Quebec, 2014. 4204–4207
Halimi A, Dobigeon N, Toumeret J Y, et al. Unmixing multitemporal hyperspectral images accounting for endmember variability. In: Proceedings of IEEE European Signal Processing Conference (EUSIPCO), Nice, 2015. 1656–1660
Thouvenin P A, Dobigeon N, Tourneret J Y. A hierarchical Bayesian model accounting for endmember variability and abrupt spectral changes to unmix multitemporal hyperspectral images. IEEE Trans Comput Imaging, 2017, 4: 32–45
Thouvenin P A, Dobigeon N, Tourneret J Y. Unmixing multitemporal hyperspectral images with variability: an online algorithm. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, 2016. 3351–3355
Thouvenin P A, Dobigeon N, Tourneret J Y. Online unmixing of multitemporal hyperspectral images accounting for spectral variability. IEEE Trans Image Process, 2016, 25: 3979–3990
Henrot S, Chanussot J, Jutten C. Dynamical spectral unmixing of multitemporal hyperspectral images. IEEE Trans Image Process, 2016, 25: 3219–3232
Licciardi G A, Frate F D. Pixel unmixing in hyperspectral data by means of neural networks. IEEE Trans Geosci Remote Sens, 2011, 49: 4163–4172
Erturk A, Plaza A. Informative change detection by unmixing for hyperspectral images. IEEE Geosci Remote Sens Lett, 2015, 12: 1252–1256
Liu S, Bruzzone L, Bovolo F, et al. Multitemporal spectral unmixing for change detection in hyperspectral images. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, 2015. 4165–4168
Erturk A, Iordache M D, Plaza A. Sparse unmixing-based change detection for multitemporal hyperspectral images. IEEE J Sel Top Appl Earth Observ Remote Sens, 2015, 9: 708–719
Erturk A, Iordache M D, Plaza A. Sparse unmixing with dictionary pruning for hyperspectral change detection. IEEE J Sel Top Appl Earth Observ Remote Sens, 2016, 10: 321–330
Torres-Madronero M C, Velez-Reyes M, van Bloem S J, et al. Multi-temporal unmixing analysis of Hyperion images over the Guanica Dry Forest. In: Proceedings of IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lisbon, 2011. 1–4
Cerra D, Muller R, Reinartz P. Cloud removal in image time series through unmixing. In: Proceedings of International Workshop on the Analysis of Multitemporal Remote Sensing Images, Annecy, 2015. 1–4
Dombrowski M, Bajaj J, Willson P. Video-rate visible to LWIR hyperspectral imaging and image exploitation. In: Proceedings of IEEE Applied Imagery Pattern Recognition Workshop, Washington, 2002. 178–185
Arnold T, de Biasio M, Leitner R. Hyperspectral video endoscope for intra-surgery tissue classification using auto-fluorescence and reflectance spectroscopy. In: Proceedings of SPIE, European Conference on Biomedical Optics, Munich, 2011. 8087: 808711
Banerjee A, Burlina P, Broadwater J. Hyperspectral video for illumination-invariant tracking. In: Proceedings of IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Grenoble, 2009. 1–4
van Nguyen H, Banerjee A, Chellappa R. Tracking via object reflectance using a hyperspectral video camera. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, San Francisco, 2010. 44–51
Bodkin A, Sheinis A, Norton A, et al. Video-rate chemical identification and visualization with snapshot hyperspectral imaging. In: Proceedings of SPIE Defense, Security, and Sensing, Baltimore, 2012. 8374: 83740C
Merkurjev E, Sunu J, Bertozzi A L. Graph MBO method for multiclass segmentation of hyperspectral stand-off detection video. In: Proceedings of IEEE International Conference on Image Processing (ICIP), Paris, 2014. 689–693
Hu H, Sunu J, Bertozzi A L. Multi-class graph Mumford-Shah model for plume detection using the MBO scheme. In: Proceedings of International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, Hongkong, 2015. 209–222
Tochon G, Pauwels D, Dalla M M, et al. Unmixing-based gas plume tracking in LWIR hyperspectral video sequences. In: Proceedings of IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Los Angeles, 2016. 1–5
Xu Y, Wu Z, Wei Z, et al. GAS plume detection in hyperspectral video sequence using low rank representation. In: Proceedings of IEEE International Conference on Image Processing (ICIP), Phoenix, 2016. 2221–2225
Xu Y, Wu Z, Chanussot J, et al. Low-rank decomposition and total variation regularization of hyperspectral video sequences. IEEE Trans Geosci Remote Sens, 2018, 56: 1680–1694
Yu H, Wu Z, Wei J, et al. GPU parallel implementation of gas plume detection in hyperspectral video sequences. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, 2018. 2781–2784
Tochon G, Chanussot J, Dalla M M, et al. Object tracking by hierarchical decomposition of hyperspectral video sequences: application to chemical gas plume tracking. IEEE Trans Geosci Remote Sens, 2017, 55: 4567–4585
Tan S, Liu H, Gu Y, et al. Sequential tensor decomposition for Gas tracking in Lwir hyperspectral video sequences. In: Proceedings of IEEE Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, 2019. 1–5
Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber. Rev Mod Phys, 2006, 78: 1135–1184
Hakala T, Suomalainen J, Kaasalainen S, et al. Full waveform hyperspectral LiDAR for terrestrial laser scanning. Opt Express, 2012, 20: 7119–7127
Hernandez-Marin S, Wallace A M, Gibson G J. Bayesian analysis of lidar signals with multiple returns. IEEE Trans Pattern Anal Mach Intell, 2007, 29: 2170–2180
Suomalainen J, Hakala T, Kaartinen H, et al. Demonstration of a virtual active hyperspectral LiDAR in automated point cloud classification. ISPRS J Photogrammetry Remote Sens, 2011, 66: 637–641
Woodhouse I H, Nichol C, Sinclair P, et al. A multispectral canopy LiDAR demonstrator project. IEEE Geosci Remote Sens Lett, 2011, 8: 839–843
Wallace A M, McCarthy A, Nichol C J, et al. Design and evaluation of multispectral lidar for the recovery of arboreal parameters. IEEE Trans Geosci Remote Sens, 2013, 52: 4942–4954
Wei G, Shalei S, Bo Z, et al. Multi-wavelength canopy LiDAR for remote sensing of vegetation: Design and system performance. ISPRS J Photogramm Remote Sens, 2012, 69: 1–9
Wichmann V, Bremer M, Lindenberger J, et al. Evaluating the potential of multispectral airborne lidar for topographic mapping and land cover classification. ISPRS Ann Photogramm Remot Sens Spatial Inf Sci, 2015, 2: 113–119
Shi S, Song S, Gong W, et al. Improving backscatter intensity calibration for multispectral LiDAR. IEEE Geosci Remote Sens Lett, 2015, 12: 1421–1425
Gu Y F, Jin X D, Xiang R Z, et al. UAV-based integrated multispectral-LiDAR imaging system and data processing. Sci China Technol Sci, 2020, 63: 1293–1301
Pedergnana M, Marpu P R, Dalla M M, et al. Classification of remote sensing optical and LiDAR data using extended attribute profiles. IEEE J Sel Top Appl Earth Observ Remote Sens, 2012, 6: 856–865
Ghamisi P, Benediktsson J A, Phinn S. Land-cover classification using both hyperspectral and LiDAR data. Int J Image Data Fusion, 2015, 6: 189–215
Pedergnana M, Marpu P R, Dalla M M, et al. A novel technique for optimal feature selection in attribute profiles based on genetic algorithms. IEEE Trans Geosci Remote Sens, 2013, 51: 3514–3528
Ghamisi P, Hofle B, Zhu X X. Hyperspectral and LiDAR data fusion using extinction profiles and deep convolutional neural network. IEEE J Sel Top Appl Earth Observ Remote Sens, 2017, 10: 3011–3024
Rasti B, Ghamisi P, Gloaguen R. Hyperspectral and LiDAR fusion using extinction profiles and total variation component analysis. IEEE Trans Geosci Remote Sens, 2017, 55: 3997–4007
Rasti B, Ghamisi P, Plaza J, et al. Fusion of hyperspectral and LiDAR data using sparse and low-rank component analysis. IEEE Trans Geosci Remote Sens, 2017, 55: 6354–6365
Khodadadzadeh M, Li J, Prasad S, et al. Fusion of hyperspectral and LiDAR remote sensing data using multiple feature learning. IEEE J Sel Top Appl Earth Observ Remote Sens, 2015, 8: 2971–2983
Liao W Z, Pizurica A, Bellens R, et al. Generalized graph-based fusion of hyperspectral and LiDAR data using morphological features. IEEE Geosci Remote Sens Lett, 2015, 12: 552–556
Liao W, Xia J, Du P, et al. Semi-supervised graph fusion of hyperspectral and LiDAR data for classification. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, 2015. 53–56
Liao W, Huang X, van Coillie F, et al. Processing of multiresolution thermal hyperspectral and digital color data: outcome of the 2014 IEEE GRSS data fusion contest. IEEE J Sel Top Appl Earth Observ Remote Sens, 2015, 8: 2984–2996
Xia J, Liao W, Du P. Hyperspectral and LiDAR classification with semisupervised graph fusion. IEEE Geosci Remote Sens Lett, 2020, 17: 666–670
Chen Y, Li C, Ghamisi P, et al. Deep fusion of remote sensing data for accurate classification. IEEE Geosci Remote Sens Lett, 2017, 14: 1253–1257
Li H, Ghamisi P, Soergel U, et al. Hyperspectral and LiDAR fusion using deep three-stream convolutional neural networks. Remote Sens, 2018, 10: 1649
Zhang M, Li W, Du Q, et al. Feature extraction for classification of hyperspectral and LiDAR data using patch-to-patch CNN. IEEE Trans Cybern, 2020, 50: 100–111
Nen M, Alpayd E N. Multiple kernel learning algorithms. J Mach Learn Res, 2011, 12: 2211–2268
Zhang M, Ghamisi P, Li W. Classification of hyperspectral and LIDAR data using extinction profiles with feature fusion. Remote Sens Lett, 2017, 8: 957–966
Zhang Y, Yang H L, Prasad S, et al. Ensemble multiple kernel active learning for classification of multisource remote sensing data. IEEE J Sel Top Appl Earth Observ Remote Sens, 2015, 8: 845–858
Hartzell P, Glennie C, Biber K, et al. Application of multispectral LiDAR to automated virtual outcrop geology. ISPRS J Photogrammetry Remote Sens, 2014, 88: 147–155
Niu Z, Xu Z G, Sun G, et al. Design of a new multispectral waveform LiDAR instrument to monitor vegetation. IEEE Geosci Remote Sens Lett, 2015, 12: 1506–1510
Du L, Shi S, Gong W, et al. Wavelength selection of hyperspectral LiDAR based on feature weighting for estimation of leaf nitrogen content in rice. In: Proceedings of XXIII ISPRS Congress, Prague, 2016. 9–13
Du L, Shi S, Yang J, et al. Using different regression methods to estimate leaf nitrogen content in rice by fusing hyperspectral LiDAR data and laser-induced chlorophyll fluorescence data. Remote Sens, 2016, 8: 526
Du L, Gong W, Shi S, et al. Estimation of rice leaf nitrogen contents based on hyperspectral LIDAR. Int J Appl Earth Observation Geoinf, 2016, 44: 136–143
Junttila S, Kaasalainen S, Vastaranta M, et al. Investigating bi-temporal hyperspectral lidar measurements from declined trees-experiences from laboratory test. Remote Sens, 2015, 7: 13863–13877
Nevalainen O, Hakala T, Suomalainen J, et al. Fast and nondestructive method for leaf level chlorophyll estimation using hyperspectral LiDAR. Agr Forest Meteorol, 2014, 198: 250–258
Hakala T, Nevalainen O, Kaasalainen S, et al. Technical note: multispectral lidar time series of pine canopy chlorophyll content. Biogeosciences, 2015, 12: 1629–1634
Chen B, Shi S, Gong W, et al. Multispectral LiDAR point cloud classification: a two-step approach. Remote Sens, 2017, 9: 373
Puttonen E, Hakala T, Nevalainen O, et al. Artificial target detection with a hyperspectral LiDAR over 26-h measurement. Opt Eng, 2015, 54: 013105
Matikainen L, Karila K, Hyyppä J, et al. Object-based analysis of multispectral airborne laser scanner data for land cover classification and map updating. ISPRS J Photogrammetry Remote Sens, 2017, 128: 298–313
Fernandez-Diaz J, Carter W, Glennie C, et al. Capability assessment and performance metrics for the Titan multispectral mapping lidar. Remote Sens, 2016, 8: 936
Bakula K, Kupidura P, Jelowicki L. Testing of land cover classification from multispectral airborne laser scanning data. In: Proceedings of XXIII ISPRS Congress, Prague, 2016. 161–169
Wang C K, Tseng Y H, Chu H J. Airborne dual-wavelength LiDAR data for classifying land cover. Remote Sens, 2014, 6: 700–715
Teo T, Wu H. Analysis of land cover classification using multiwavelength LiDAR system. Appl Sci, 2017, 7: 1–20
Leigh H W, Magruder L A. Using dual-wavelength, full-waveform airborne lidar for surface classification and vegetation characterization. J Appl Remote Sens, 2016, 10: 045001
Zou X, Zhao G, Li J, et al. 3D land cover classification based on multispectral lidar point clouds. In: Proceedings of XXIII ISPRS Congress, Prague, 2016. 741–747
Sun J, Shi S, Chen B, et al. Combined application of 3D spectral features from multispectral LiDAR for classification. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, 2017. 5264–5267
Ekhtari N, Glennie C, Fernandez-Diaz J C. Classification of multispectral lidar point clouds. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, 2017. 2756–2759
Ekhtari N, Glennie C, Fernandez-Diaz J C, et al. Classification of airborne multispectral lidar point clouds for land cover mapping. IEEE J Sel Top Appl Earth Observ Remote Sens, 2018, 11: 2068–2078
Miller C I, Thomas J J, Kim J P, et al. Application of image classification techniques to multispectral lidar point cloud data. In: Proceedings of SPIE Defense + Security, Baltimore, 2016. 9832: 98320X
Morsy S, Shaker A, El-Rabbany A. Multispectral LiDAR data for land cover classification of urban areas. Sensors, 2017, 17: 958
Wang Q, Gu Y. A discriminative tensor representation model for feature extraction and classification of multispectral LiDAR data. IEEE Trans Geosci Remote Sens, 2020, 58: 1568–1586
Li H, Jiang T, Zhang K. Efficient and robust feature extraction by maximum margin criterion. IEEE Trans Neural Netw, 2006, 17: 157–165
Liu Y, Gao G, Gu Y. Tensor matched subspace detector for hyperspectral target detection. IEEE Trans Geosci Remote Sens, 2016, 55: 1967–1974
Veganzones M A, Cohen J E, Farias R C, et al. Nonnegative tensor CP decomposition of hyperspectral data. IEEE Trans Geosci Remote Sens, 2016, 54: 2577–2588
Acknowledgements
This work was supported by National Natural Science Foundation of Key International Cooperation of China (Grant No. 61720106002) and National Key R&D Program of China (Grant No. 2017YFC1405100). The authors would like to thank Beijing Anzhou Technology Co. LTD for providing the HSV data shown in Figure 7.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gu, Y., Liu, T., Gao, G. et al. Multimodal hyperspectral remote sensing: an overview and perspective. Sci. China Inf. Sci. 64, 121301 (2021). https://doi.org/10.1007/s11432-020-3084-1
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11432-020-3084-1