Abstract
Sparse representation based on dictionary learning has yielded impressive effects on hyperspectral image (HSI) classification. But most of these methods utilize only the single spectral feature of HSI and advanced features are not considered, such that the discriminability of sparse representation coefficients is relatively weak. In this paper, we propose a novel multifeature spatial aware dictionary learning model by incorporating complementary across-feature and contextual information obtaining from HSI. The newly developed model, by designing a joint sparse regularization term for pixels represented by several complementary yet correlated features in a contextual group, makes the learning sparse coefficients have enough discriminability. Also, in order to further improve the discrimination ability of coding coefficients, utilizing kernel trick, we design the corresponding kernel extension of the newly proposed model. Based on the newly presented models, we give two corresponding discriminant dictionary learning algorithms. The experimental results on Indian Pines and University of Pavia images show that the effectiveness of the proposed algorithms, which also validate that our algorithms can obtain more discriminant coding coefficients.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Solomon, J., Rock, B.: Imaging spectrometry for earth remote sensing. Science 228(4704), 1147–1152 (1985)
Chang, C.I.: Hyperspectral Data Exploitation: Theory and Applications. Wiley-Interscience, Hoboken (2007)
Yang, H.: A back-propagation neural network for mineralogical mapping from AVIRIS data. Int. J. Remote Sens. 20(1), 97–110 (1999)
Benediktsson, J.A., Swain, P.H., Ersoy, O.K.: Conjugate-gradient neural networks in classification of multisource and very-high-dimensional remote sensing data. Int. J. Remote Sens. 14(15), 2883–2903 (1993)
Mernyi, E.: Intelligent understanding of hyperspectral images through self-organizing neural maps. In: Proceedings 2nd International Conference CITSA, pp. 30–35 (2005)
Hernndezespinosa, C., Fernndezredondo, M., Torressospedra, J.: Some experiments with ensembles of neural networks for classification of hyperspectral images. In: Advances in Neural Networks—Isnn 2004, International Symposium on Neural Networks, Dalian, China, August 19–21, 2004, Proceedings. DBLP, pp. 912–917 (2004)
Zhou, H., Mao, Z., Wang. D.: Classification of coastal areas by airborne hyperspectral image. In: Optical Technologies for Atmospheric, Ocean, and Environmental Studies. International Society for Optics and Photonics, pp. 471–476 (2005)
Goel, P.K., Prasher, S.O., Patel, R.M., Landry, J.A., Bonnell, R.B., Viau, A.A.: Classification of hyper-spectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn. Comput. Electron. Agric. 39(2), 67–93 (2003)
Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, San Diego (2013)
Vaiphasa, C.: Innovative genetic algorithm for hyperspectral image classification. In: Proceedings Of International Conference on Map Asia, p. 45 (2003)
Melgani, F., Bruzzone, L.: Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42(8), 1778–1790 (2004)
Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2(2), 121–167 (1998)
Du, P., Tan, K., Xing, X.: A novel binary tree support vector machine for hyperspectral remote sensing image classification. Opt. Commun. 285(13), 3054–3060 (2012)
Li, J., Bioucas-Dias, J.M., Plaza, A.: Hyperspectral image segmenta-tion using a new Bayesian approach with active learning. IEEE Trans. Geosci. Remote Sens. 49(10), 3947–3960 (2011)
Fauvel, M., Tarabalka, Y., Benediktsson, J.A., Chanussot, J., Tilton, J.C.: Advances in spectral–spatial classification of hyperspectral images. Proc. IEEE 101(3), 652–675 (2013)
Li, J., Marpu, P.R., Plaza, A., Bioucas-Dias, J.M., Benediktsson, J.A.: Generalized composite kernel framework for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 51(9), 4816–4829 (2013)
Camps-Valls, G., Gomez-Chova, L., Muoz-Mar, J., Vila-Frances, J., Calpe-Maravilla, J.: Composite kernels for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 3(1), 93–97 (2006)
Hang, R., Liu, Q., Song, H., Sun, Y.: Matrix-based discriminant subspace ensemble for hyperspectral image spatialspectral feature fusion. IEEE Trans. Geosci. Remote Sens. 54(2), 783–794 (2016)
Hang, R., Liu, Q., Sun, Y., Yuan, X., Pei, H., Plaza, J.: Robust matrix discriminative analysis for feature extraction from hyperspectral images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 10(5), 2002–2011 (2017)
Tarabalka, Y., Benediktsson, J.A., Chanussot, J.: Spectralspatial classification of hyperspectral imagery based on partitional clustering techniques. IEEE Trans. Geosci. Remote Sens. 47(8), 2973–2987 (2009)
Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009)
Chen, Y., Nasrabadi, N.M., Tran, T.D.: Hyperspectral image classification via kernel sparse representation. IEEE Trans. Geosci. Remote Sens. 51(1), 217–231 (2013)
Qian, Y., Ye, M., Zhou, J.: Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture features. IEEE Trans. Geosci. Remote Sens. 51(4), 2276–2291 (2013)
Chen, Y., Nasrabadi, N.M., Tran, T.D.: Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans. Geosci. Remote Sens. 49(10), 3973–3985 (2011)
Tropp, J.A., Gilbert, A.C., Strauss, M.J.: Algorithms for simultaneous sparse approximation. Part I: greedy pursuit. Signal Process. 86(3), 572–588 (2006)
Wang, Z., Nasrabadi, N.M., Huang, T.S.: Spatialspectral classification of hyperspectral images using discriminative dictionary designed by learning vector quantization. IEEE Trans. Geosci. Remote Sens. 52(8), 4808–4822 (2014)
Huang, K., Aviyente, S.: Sparse representation for signal classification. In: Advances in neural information processing systems, pp. 609–616 (2007)
Yang, M., Dai, D., Shen, L., Gool, L.V.: Latent dictionary learning for sparse representation based classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4138–4145 (2014)
Yang, M., Zhang, L., Feng, X., Zhang, D.: Sparse representation based fisher discrimination dictionary learning for image classification. Int. J. Comput. Vis. 109(3), 209–232 (2014)
Wang, Z., Liu, J., Xue, J.H.: Joint sparse model-based discriminative K-SVD for hyperspectral image classification. Signal Process. 133, 144–155 (2017)
Sun, Y., Liu, Q., Tang, J., Tao, D.: Learning discriminative dictionary for group sparse representation. IEEE Trans. Image Process. 23(9), 3816–3828 (2014)
Charles, A.S., Olshausen, B.A., Rozell, C.J.: Learning sparse codes for hyperspectral imagery. IEEE J. Sel. Top. Signal Process. 5(5), 963–978 (2011)
Soltani-Farani, A., Rabiee, H.R., Hosseini, S.A.: Spatial-aware dictionary learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 53(1), 527–541 (2015)
Zhang, E., Zhang, X., Jiao, L., Hou, B.: Weighted multifeature hyperspectral image classification via kernel joint sparse representation. Neurocomputing 178, 71–86 (2016)
Shekhar, S., Patel, V.M., Nasrabadi, N.M., Chellappa, R.: Joint sparse representation for robust multimodal biometrics recognition. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 113–126 (2014)
Yuan, X.T., Liu, X., Yan, S.: Visual classification with multitask joint sparse representation. IEEE Trans. Image Process. 21(10), 4349–4360 (2012)
Li, J., Zhang, H., Zhang, L., Zhang, L.: Joint collaborative representation with multitask learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 52(9), 5923–5936 (2014)
Fang, L., Li, S., Kang, X., Benediktsson, J.A.: Spectralspatial hyperspectral image classification via multiscale adaptive sparse representation. IEEE Trans. Geosci. Remote Sens. 52(12), 7738–7749 (2014)
Zheng, X., Sun, X., Fu, K., Wang, H.: Automatic annotation of satellite images via multifeature joint sparse coding with spatial relation constraint. IEEE Geosci. Remote Sens. Lett. 10(4), 652–656 (2013)
Camps-Valls, G., Bruzzone, L.: Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 43(6), 1351–1362 (2005)
Plaza, A., Benediktsson, J.A., Boardman, J.W., Brazile, J., Bruzzone, L., Camps-Valls, G.: Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 113, S110–S122 (2009)
Su, S., Ming, Y.: Hyperspectral linage classification method based on watershed segmentation and sparse representation. Comput. Sci. 43(2), 89–94 (2016)
Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)
Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In: Advances in neural information processing systems, pp. 801–808 (2007)
Engan, K., Aase, S.O., Husoy, J.H.: Method of optimal directions for frame design. In: Proceedings of 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. IEEE, pp. 2443–2446 (1999)
Tadjudin, S., Landgrebe, D.A.: Covariance estimation with limited training samples. IEEE Trans. Geosci. Remote Sens. 37(4), 2113–2118 (1999)
Tarabalka, Y., Benediktsson, J.A., Chanussot, J., Chanussot, J., Angulo, J., Fauvel, M.: Classification of hyperspectral data using support vector machines and adaptive neighborhoods. In: Proceedings of 6th EARSeL SIG IS Workshop, pp. 1–6 (2009)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, pp. 119–131. Wiley, Hoboken (2001)
Acknowledgements
This work is supported by National Natural Science Foundation of China (61432008, 61272222, and 61603193) and Natural Science Foundation of Jiangsu Province (BK20171479, BK20161020, BK20161560).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Zhang, H., Yang, M., Yang, W. et al. Spatial-aware hyperspectral image classification via multifeature kernel dictionary learning. Int J Data Sci Anal 7, 115–129 (2019). https://doi.org/10.1007/s41060-018-0115-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41060-018-0115-0