[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Data gathering via mobile sink in WSNs using game theory and enhanced ant colony optimization

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Optimal performance and improved lifetime are the most desirable design benchmarks for WSNs and the mechanism for data gathering is a major constituent influencing these standards. Several researchers have provided significant evidence on the advantage of mobile sink (MS) in performing effective gathering of relevant data. However, determining the trajectory for MS is an NP-hard-problem. Especially in delay-inevitable applications, it is challenging to select the best-stops or rendezvous points (RPs) for MS and also to design an efficient route for MS to gather data. To provide a suitable solution to these challenges, we propose in this paper, a game theory and enhanced ant colony based MS route selection and data gathering (GTAC-DG) technique. This is a distributed method of data gathering using MS, combining the optimal decision making skill of game theory in selecting the best RPs and computational swarm intelligence of enhanced ant colony optimization in choosing the best path for MS. GTAC-DG helps to reduce data transfer and management, energy consumption and delay in data delivery. The MS moves in a reliable and intelligent trajectory, extending the lifetime and conserving the energy of WSN. The simulation results prove the effectiveness of GTAC-DG in terms of metrics such as energy and network lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kim, B.-S., Kim, K.-I., Shah, B., Chow, F., & Kim, K. (2019). Wireless sensor networks for big data systems. Sensors, 19(7), 1565.

    Article  Google Scholar 

  2. Osamy, W., Khedr, A. M., & Salim, A. (2019). Adaptive distributed service discovery protocol for Internet of Things based mobile wireless sensor networks. IEEE Sensor Journal, 19(22), 10869–10880.

    Article  Google Scholar 

  3. Osamy, W., El-sawy, Ahmed A., & Khedr, Ahmed M. (2019). SATC: A simulated annealing based tree construction and scheduling algorithm for minimizing aggregation time in wireless sensor networks. Wireless Personal Communications, 108(2), 921–938.

    Article  Google Scholar 

  4. Osamy, W., Khedr, A. M., Aziz, A., & El-Sawy, A. (2019). Cluster-tree routing scheme for data gathering in periodic monitoring applications. IEEE Access, 6, 77372–77387.

    Article  Google Scholar 

  5. Osamy, W., Salim, A., & Khedr, A. M. (2018). An information entropy based-clustering algorithm in heterogeneous wireless sensor networks. Wireless Networks. https://doi.org/10.1007/s11276-018-1877-y.

    Article  Google Scholar 

  6. Salim, A., Osamy, W., & Khedr, A. M. (2014). IBLEACH: Effective LEACH protocol for wireless sensor networks. Wireless Networks, 20, 1515–1525.

    Article  Google Scholar 

  7. Carlos-Mancilla, M., Lpez-Mellado, E., & Siller, M. (2016). Wireless sensor networks formation: Approaches and techniques. Journal of Sensors, 2016, 1–18.

    Article  Google Scholar 

  8. Joshi, N., & Kansal, P. (2017). Data collection maximization of EH-WSN using mobile sink. In 2017 International conference on emerging trends in computing and communication technologies (ICETCCT).

  9. Ghosh, N., & Banerjee, I. (2018). Application of mobile sink in wireless sensor networks. In 2018 10th International conference on communication systems & networks (COMSNETS), Bengaluru (pp. 507–509).

  10. Thiruchelvi, A., & Karthikeyan, N. (2019). A novel pair based sink relocation and route adjustment in mobile sink WSN integrated IoT. In IET Communications. https://doi.org/10.1049/iet-com.2019.0054.

  11. Tunca, C., Isik, S., Donmez, M. Y., & Ersoy, C. (2014). Distributed mobile sink routing for wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials, 16(2), 877–897.

    Article  Google Scholar 

  12. Bhushan, B., & Sahoo, G. (2019). E2SR2: An acknowledgement-based mobile sink routing protocol with rechargeable sensors for wireless sensor networks. Wireless Networks, 25(5), 2697–2721.

    Article  Google Scholar 

  13. Kaswan, A., Nitesh, K., & Jana, P. K. (2017). Energy efficient path selection for mobile sink and data gathering in wireless sensor networks. AEU—International Journal of Electronics and Communications, 73, 110–118.

    Article  Google Scholar 

  14. Alsaafin, A., Khedr, A. M., & Aghbari, Z. A. (2018). Distributed trajectory design for data gathering using mobile sink in wireless sensor networks. AEU—International Journal of Electronics and Communications, 96, 1–12.

    Article  Google Scholar 

  15. Ketshabetswe, L. K., Zungeru, A. M., Mangwala, M., Chuma, J. M., & Sigweni, B. (2019). Communication protocols for wireless sensor networks: A survey and comparison. Heliyon, 5(5), e01591.

    Article  Google Scholar 

  16. Bhuiyan, B. A. (2018). An overview of game theory and some applications. Philosophy and Progress, 59(1–2), 111–128. https://doi.org/10.3329/pp.v59i1-2.36683

    Article  Google Scholar 

  17. Habib, M. A., & Moh, S. (2019). Game theory-based routing for wireless sensor networks: A comparative survey. Applied Sciences, 9(14), 2896.

    Article  Google Scholar 

  18. Kothawade, N., Biradar, A., Kodmelwar, K., Tambe, K., & Deshpande, V. (2016). Performance analysis of wireless sensor network by varying reporting rate. Indian Journal of Science and Technology, 9(26), 1–6.

    Article  Google Scholar 

  19. Lin, H., Bai, D., Gao, D., & Liu, Y. (2016). Maximum data collection rate routing protocol based on topology control for rechargeable wireless sensor networks. Sensors, 16(8), 1201.

    Article  Google Scholar 

  20. Dorigo, M., & Stützle, T. (2018). Ant colony optimization: Overview and recent advances. Handbook of Metaheuristics International Series in Operations Research & Management Science. https://doi.org/10.1007/978-3-319-91086-4_10.

    Article  Google Scholar 

  21. Kakde, K. R., & Kadam, M. (2017). Performance analysis of tree cluster based data gathering for WSNs. In 2017 International conference on intelligent computing and control (I2C2).

  22. Jayram, B. G., & Ashoka, D. (2016). Validation of multiple mobile elements based data gathering protocols for dynamic and static scenarios in wireless sensor networks. Procedia Computer Science, 92, 260–266.

    Article  Google Scholar 

  23. Neamatollahi, P., Abrishami, S., Naghibzadeh, M., Yaghmaee Moghaddam, M. H., & Younis, O. (2018). Hierarchical clustering-task scheduling policy in cluster-based wireless sensor networks. IEEE Transactions on Industrial Informatics, 14(5), 1876–1886.

    Article  Google Scholar 

  24. Safia, A., Aghbari, Z., & Kamel, I. (2017). Efficient data collection by mobile sink to detect phenomena in Internet of Things. Information, 8(4), 123.

    Article  Google Scholar 

  25. Mishra, D. P., & Kumar, R. (2019). Hybrid sink repositioning mechanism for Wireless Sensor Network. International Journal of Research in Advent Technology, 7(3), 1442–1447.

    Article  Google Scholar 

  26. Tang, J., Guo, S., & Yang, Y. (2015). Dellat: Delivery latency minimization in wireless sensor networks with mobile sink. In IEEE international conference on communications (ICC), London (pp. 6481–6486).

  27. Kuhlani, H., Wang, X., Hawbani, A., & Busaileh, O. (2019). Heuristic data dissemination for mobile sink networks. Wireless Networks. https://doi.org/10.1007/s11276-019-02154-9.

    Article  Google Scholar 

  28. Chen, F., Zhang, J., Tang, J., & Wang, T. (2017). Energy-efficient data-gathering rendezvous algorithms with mobile sinks for wireless sensor networks. International Journal of Sensor Networks, 23(4), 248.

    Article  Google Scholar 

  29. Kumar, N., & Dash, D. (2017). Time-sensitive data collection with path-constrained mobile sink in WSN. In 2017 Third international conference on research in computational intelligence and communication networks (ICRCICN).

  30. Gao, Y., Wang, J., Wu, W., Sangaiah, A. K., & Lim, S.-J. (2019). Travel route planning with optimal coverage in difficult wireless sensor network environment. Sensors, 19(8), 1838.

    Article  Google Scholar 

  31. Salarian, H., Chin, K.-W., & Naghdy, F. (2014). An energy-efficient mobile-sink path selection strategy for wireless sensor networks. IEEE Transactions on Vehicular Technology, 63(5), 2407–2419.

    Article  Google Scholar 

  32. Ghotra, A. (2017). Optimizing inter cluster ant colony optimization data aggregation algorithm with rendezvous nodes and mobile sink. Wireless Sensor Network, 09(01), 16–24.

    Article  Google Scholar 

  33. Vijayashree, R., & Dhas, C. S. G. (2019). Energy efficient data collection with multiple mobile sink using artificial bee colony algorithm in large-scale WSN. Automatika, 60(5), 555–563. https://doi.org/10.1080/00051144.2019.1666548

    Article  Google Scholar 

  34. Wang, J., Gao, Y., Liu, W., Sangaiah, A. K., & Kim, H.-J. (2019). Energy efficient routing algorithm with mobile sink support for wireless sensor networks. Sensors (Basel), 19(7), 1494. https://doi.org/10.3390/s19071494.

    Article  Google Scholar 

  35. Yang, G., Xu, H., He, X., Wang, G., Xiong, N., & Wu, C. (2016). Tracking mobile sinks via analysis of movement angle changes in WSNs. Sensors, 16(4), 449.

    Article  Google Scholar 

  36. AlSkaif, T., Zapata, M. G., & Bellalta, B. (2015). Game theory for energy efficiency in wireless sensor networks: Latest trends. Journal of Network and Computer Applications, 54(1), 33–61.

    Article  Google Scholar 

  37. Lin, D., & Wang, Q. (2019). An energy-efficient clustering algorithm combined game theory and dual-cluster-head mechanism for WSNs. IEEE Access, 7, 49894–49905.

    Article  Google Scholar 

  38. Hendrarini, N., Asvial, M., & Sari, R.-F. (2019). Optimization of heterogeneous sensor networks with clustering mechanism using game theory algorithm. In Proceedings of the 2nd international conference on software engineering and information management (ICSIM).

  39. Yang, L., Lu, Y., & Zhong, Y. (2016). A hybrid, game theory based, and distributed clustering protocol for wireless sensor networks. Wireless Networks, 22(3), 1007–1021.

    Article  Google Scholar 

  40. Liu, Q., & Liu, M. (2017). Energy-efficient clustering algorithm based on game theory for wireless sensor networks. International Journal of Distributed Sensor Networks, 13(11), 155014771774370.

    Article  Google Scholar 

  41. Zayene, M., Habachi, O., Meghdadi, V., Ezzedine, T., & Cances, J. P. (2019). A coalitional game-theoretic framework for cooperative data exchange using instantly decodable network coding. IEEE Access, 7, 26752–26765.

    Article  Google Scholar 

  42. Koley, I., & Samanta, T. (2018). Mobile sink based data collection for energy efficient coordination in wireless sensor network using cooperative game model. Telecommunication Systems, 71(3), 377–396.

    Article  Google Scholar 

  43. Yang, L., Lu, Y., Xiong, L., Tao, Y., & Zhong, Y. (2017). A game theoretic approach for balancing energy consumption in clustered wireless sensor networks. Sensors, 17(11), 2654.

    Article  Google Scholar 

  44. Haghighi, M., Maraslis, K., Tryfonas, T., & Oikonomou, G. (2015). Game theoretic approach towards energy-efficient task distribution in wireless sensor networks, 2015 Ieee Sensors.

  45. Wang, J., Cao, J., Sherratt, R. S., & Park, J. H. (2017). An improved ant colony optimization-based approach with mobile sink for wireless sensor networks. The Journal of Supercomputing, 74(12), 6633–6645.

    Article  Google Scholar 

  46. Rajasekaran, A., & Nagarajan, V. (2018) Cluster-based wireless sensor networks using ant colony optimization. In International conference on intelligent data communication technologies and Internet of Things (ICICI) 2018 Lecture notes on data engineering and communications technologies (pp. 42–55).

  47. Zhang, H., Li, Z., Shu, W., & Chou, J. (2019). Ant colony optimization algorithm based on mobile sink data collection in industrial wireless sensor networks. EURASIP Journal on Wireless Communications and Networking. https://doi.org/10.1186/s13638-019-1472-7.

    Article  Google Scholar 

  48. Kumar, P., Amgoth, T., & Annavarapu, C. S. (2018). R ACO-based mobile sink path determination for wireless sensor networks under non-uniform data constraints. Applied Soft Computing, 69, 528–540.

    Article  Google Scholar 

  49. Mehto, A., Tapaswi, S., & Pattanaik, K. K. (2019). A review on rendezvous based data acquisition methods in wireless sensor networks with mobile sink. Wireless Networks. https://doi.org/10.1007/s11276-019-02022-6.

    Article  Google Scholar 

  50. Basillis, G. (2014). Prolonging network lifetime in wireless sensor networks with path-constrained mobile sink. International Journal of Advanced Computer Science and Applications. https://doi.org/10.14569/ijacsa.2014.051012

    Article  Google Scholar 

  51. Liu, X. (2015). An optimal-distance-based transmission strategy for lifetime maximization of wireless sensor networks. Sensors Journal IEEE, 15(6), 3484–3491.

    Article  Google Scholar 

  52. Reed, M., Yiannakou, A., & Evering, R. (2014). An ant colony algorithm for the multi-compartment vehicle routing problem. Applied Soft Computing, 15, 169–176.

    Article  Google Scholar 

  53. Kefi, S., Rokbani, N., & Alimi, A. M. (2016). Solving the traveling salesman problem using ant colony metaheuristic, a review. In International conference on hybrid intelligent systems (pp. 421–430). Cham: Springer.

  54. Neto, R. T., & Godinho Filho, M. (2013). Literature review regarding ant colony optimization applied to scheduling problems: Guidelines for implementation and directions for future research. Engineering Applications of Artificial Intelligence, 26(1), 150–61.

    Article  Google Scholar 

  55. Cecilia, J. M., Garca, J. M., Nisbet, A., Amos, M., & Ujaldn, M. (2013). Enhancing data parallelism for ant colony optimization on GPUs. Journal of Parallel and Distributed Computing, 73(1), 52–61.

    Article  Google Scholar 

  56. Shwe, H., & Adachi, F. (2011). Power efficient adaptive network coding in wireless sensor networks. In IEEE ICC (pp. 1–5).

  57. Cheong, P. Y., Aggarwal, D., Hanne, T., & Dornberger, R. (2017). Variation of ant colony optimization parameters for solving the travelling salesman problem. In IEEE 4th International conference on soft computing & machine intelligence (ISCMI), Port Louis (pp. 60–65).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Khedr.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, P.V.P., Khedr, A.M. & Aghbari, Z.A. Data gathering via mobile sink in WSNs using game theory and enhanced ant colony optimization. Wireless Netw 26, 2983–2998 (2020). https://doi.org/10.1007/s11276-020-02254-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02254-x

Keywords

Navigation