[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

An information entropy based-clustering algorithm for heterogeneous wireless sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper proposes a novel dynamic, distributive, and self-organizing entropy based clustering scheme that benefits from the local information of sensor nodes measured in terms of entropy and use that as criteria for cluster head election and cluster formation. It divides the WSN into two-levels of hierarchy and three-levels of energy heterogeneity of sensor nodes. The simulation results reveal that the proposed approach outperforms existing baseline algorithms in terms of energy consumption, stability period, and the network lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. The International Journal of Computer and Telecommunications Networking, 52(12), 2292–2330.

    Google Scholar 

  2. Huang, Y.-M., Hsieh, M.-Y., & Eika Sandnes, F. (2009). Wireless sensor networks: A survey. In Advanced information networking and applications workshops, WAINA (Vol. 09, pp. 636–641).

  3. Chatterjee, M., Das, S. K., & Turgut, D. (2002). WCA: A weighted clustering algorithm for mobile ad hoc networks. Cluster Computing, 5(2), 193–204.

    Article  Google Scholar 

  4. Karl, H., & Willig, A. (2007). Protocols and architectures for wireless sensor networks. Hoboken: Wiley.

    Google Scholar 

  5. Wang, Q., Yuan, X., Zhang, J., Gao, Y., Hong, J., Zuo, J., et al. (2015). Assessment of the sustainable development capacity with the entropy weight coefficient method. Sustainability, 7(10), 13542–13563.

    Article  Google Scholar 

  6. Cover, T. M., & Thomas, J. A. (2006). Elements of information theory., Wiley series in telecommunications and signal processing Hoboken: Wiley.

    MATH  Google Scholar 

  7. Tian, J., Liu, T., & Jiao, H. (2008). Entropy weight coefficient method for evaluating intrusion detection systems. In 2008 International Symposium on Electronic Commerce and Security (pp. 592–598).

  8. Qiang, N., & Qiannan, X. (2011). Weight optimization method of wireless sensor network based on fuzzy MADMR. In 2011 fourth international conference on intelligent computation technology and automation, Shenzhen, Guangdong (pp. 303–306).

  9. Hengqiang, S., & Helong, Y. (2012). Application of entropy weight coefficient method in environmental assessment of soil. In World Automation Congress 2012, Puerto Vallarta, Mexico (pp. 1–4).

  10. Triantaphyllou, E. (2000). Multi-criteria decision making methods. New York: Springer.

    Book  Google Scholar 

  11. Bhunia, S. S., Das, B., & Mukherjee, N. (2014). EMCR: Routing in WSN using multi criteria decision analysis and entropy weights. In Internet and distributed computing systems, IDCS 2014, lecture notes in computer science (Vol. 8729). Cham: Springer.

  12. Rabiner Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Hawaii international conference on system sciences (pp. 1–10).

  13. Rabiner Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1, 660–670.

    Article  Google Scholar 

  14. Khediri, S. E., Nasri, N., Wei, A., & Kachouri, A. (2014). A new approach for clustering in wireless sensors networks based on LEACH. Procedia Computer Science, 32, 1180–1185.

    Article  Google Scholar 

  15. Handy, M. J., Haase, M., & Timmermann, D. (2002). Low energy adaptive clustering hierarchy with deterministic cluster-head selection. In 4th international workshop on mobile and wireless communications network (pp. 368–372).

  16. Aderohunmu, F. A., Deng, J. D., & Purvis, M. K. (2011). A deterministic energy efficient clustering protocol for wireless sensor networks. In Proceedings of the seventh IEEE international conference on intelligent sensors, sensor networks and information processing (IEEE-ISSNIP), Adelaide, Australia (pp. 341–346).

  17. Smaragdakis, G., Matta, I., & Bestavros, A. (2004). SEP: A stable election protocol for clustered heterogeneous wireless sensor networks. In Proceeding of the international workshop on SANPA.

  18. Kumar, D., Aseri, T. C., & Patel, R. B. (2009). EEHC: Energy efficient heterogeneous clustered scheme for wireless sensor networks. Computer Communications, 32(4), 662–667.

    Article  Google Scholar 

  19. Salim, A., Osamy, W., & Khedr, A. M. (2014). IBLEACH: Effective LEACH protocol for wireless sensor networks. Wireless Networks, 20, 1515–1525.

    Article  Google Scholar 

  20. Sharma, S., Bansal, R. K., & Bansal, S. (2017). Heterogeneity-aware energy-efficient clustering (HEC) technique for WSNs. KSII Transactions on Internet and Information Systems, 11(4), 1866–1888.

    Google Scholar 

  21. Fu, C., Jiang, Z., Wei, W. E. I., & Wei, A. (2013). An energy balanced algorithm of leach protocol in WSN. International Journal of Computer Science, 10(1), 354–359.

    Google Scholar 

  22. Amodu, O. A., Azlina, R., & Mahmood, R. (2018). Impact of the energy-based and location-based LEACH secondary cluster aggregation on WSN lifetime. Wireless Networks, 24, 1379–1402.

    Article  Google Scholar 

  23. Mostafa Bozorgi, S., & Massoud Bidgoli, A. (2018). HEEC: A hybrid unequal energy efficient clustering for wireless sensor networks. Wireless Networks. https://doi.org/10.1007/s11276-018-1744-x.

    Article  Google Scholar 

  24. Dutt, S., Agrawal, S., & Vig, R. (2018). Cluster-head restricted energy efficient protocol (CREEP) for routing in heterogeneous wireless sensor networks. Wireless Personal Communications, 100, 1477–1497. https://doi.org/10.1007/s11277-018-5649-x.

    Article  Google Scholar 

  25. Dutt, S., Kaur, G., & Agrawal, S. (2019). Energy efficient sector-based clustering protocol for heterogeneous WSN. Proceedings of 2nd international conference on communication, computing and networking, lecture notes in networks and systems

  26. Sharma, D., Ojha, A., & Bhondekar, A. P. (2018). Heterogeneity consideration in wireless sensor networks routing algorithms: A review. The Journal of Supercomputing. https://doi.org/10.1007/s11227-018-2635-8.

    Article  Google Scholar 

  27. Wang, Z.-X., Zhang, M., Gao, X., Wang, W., & Li, X. (2017). A clustering WSN routing protocol based on node energy and multipath. Cluster Computing. https://doi.org/10.1007/s10586-017-1550-8.

    Article  Google Scholar 

  28. Singh, D., & Panda, C. K. (2015). Performance analysis of modified stable election protocol in heterogeneous WSN. In International conference on electrical, electronics, signals, communication and optimization (p. 15).

  29. Singh, A., Singh Saini, H., & Kumar, N. (2019). D-MSEP: Distance incorporated modified stable election protocol in heterogeneous wireless sensor network. In Proceedings of 2nd international conference on communication, computing and networking, lecture notes in networks and systems (p. 46).

  30. Qing, L., Zhu, Q., & Wang, M. (2006). Design of a distributed energy-efficient clustering algorithm for heterogeneous wireless sensor networks. Computer Communications, 29(12), 2230–2237.

    Article  Google Scholar 

  31. Saini, P., & Sharma, A. K. (2010). E-DEEC-enhanced distributed energy efficient clustering scheme for heterogeneous WSN. In First international conference on parallel, distributed and grid computing (PDGC 2010), Solan (pp. 205–210).

  32. Javaid, N., Rasheed, M. B., Imran, M., Guizani, M., Khan, Z. A., Alghamdi, T. A., et al. (2015). An energy-efficient distributed clustering algorithm for heterogeneous WSNs. EURASIP Journal on Wireless communications and Networking, 2015, 151.

    Article  Google Scholar 

  33. Singh, S., Malik, A., & Kumar, R. (2017). Energy efficient heterogeneous DEEC protocol for enhancing lifetime in WSNs. Engineering Science and Technology: An International Journal, 20(1), 345–353. https://doi.org/10.1016/j.jestch.2016.08.009.

    Article  Google Scholar 

  34. Javaid, N., Qureshi, T. N., Khan, A. H., Iqbal, A., Akhtar, E., & Ishfaq, M. (2013). EDDEEC: Enhanced developed distributed energy-efficient clustering for heterogeneous wireless sensor networks. Procedia Computer Science, 19, 914–919.

    Article  Google Scholar 

  35. Shaji, M., & Ajith, S. (2015). Distributed energy efficient heterogeneous clustering in wireless sensor network. 2015 fifth international conference on advances in computing and communications (ICACC), Kochi (pp. 130–134).

  36. Mazumdar, N., & Om, H. (2017). DUCR: Distributed unequal cluster based routing algorithm for heterogeneous wireless sensor networks. International Journal of Communication Systems, 30, e3374. https://doi.org/10.1002/dac.3374.

    Article  Google Scholar 

  37. Han, R., Yang, W., Wang, Y., & You, K. (2018). DCE: A distributed energy-efficient clustering protocol for wireless sensor network based on double-phase cluster-head election. Sensors, 17(5), 998.

    Article  Google Scholar 

  38. Aderohunmu, F. A., Deng, J. D., & Purvis, M. K. (2011). Enhancing clustering in wireless sensor networks with energy heterogeneity. International Journal of Business Data Communications and Networking, 7(4), 18–32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walid Osamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osamy, W., Salim, A. & Khedr, A.M. An information entropy based-clustering algorithm for heterogeneous wireless sensor networks. Wireless Netw 26, 1869–1886 (2020). https://doi.org/10.1007/s11276-018-1877-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1877-y

Keywords

Navigation