[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

From sources to solutions: integrated approaches for Cd, Hg, and Pb remediation- a comprehensive review

  • Review Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

Urbanization, industrialization, and various other anthropogenic and natural activities increase the release of heavy metals (HMs) into the environment, posing a severe threat to nearby flora, fauna, and humans. HMs are toxic, non-biodegradable, silent, and subtle killers that alter the soil attributes and threaten plants, animals, and humans, impacting biodiversity and human health.

Objective

HMs such as Cd, Hg, and Pb disturb physiological processes in plants and animals, reducing growth, impaired reproduction, and negative impacts on human beings upon bioaccumulation in food chains. This results in the dire need for effective remediation strategies to clean up HMs in soil and water.

Methods

Various conventional and non-conventional approaches remove and detoxify HMs from the substrate. Metal immobilization, detoxification, and removal via microbial approaches, i.e., biosorption, bioaccumulation, bioaugmentation, bioleaching, and bio-volatilization, are effective in remediating Cd, Hg, and Pb.

Results  

Additionally, microbes utilize direct and indirect mechanisms to help the remediation of Cd, Hg, and Pb from contaminated sites. Genetically engineered microbes (GEMs) are also being explored for the remediation of these metals from contaminated soil, offering both opportunities and challenges regarding associated risks and management practices. This review emphasizes the possible heavy metal sources responsible for increasing the concentration of HMs in the environment and their effect on plants and animals. We will discuss various conventional remediation strategies that can help remediate Cd, Hg, and Pb.

Conclusion

By elucidating the role of microbial-dependent remediation approaches, including GEMs, this review also contributes to advancing sustainable approaches for mitigating Cd, Hg, and Pb-contaminated soil and safeguarding environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing does not apply to this article, as no datasets were generated or analyzed for the current study.

References

  • Abbas HA, El-Ganiny AM, Kamel HA (2018) Phenotypic and genotypic detection of antibiotic resistance of Pseudomonas aeruginosa isolated from urinary tract infections. Afr Health Sci 18(1):11–21

    Article  PubMed  PubMed Central  Google Scholar 

  • Abdi O, Kazemi M (2015) A review study of biosorption of heavy metals and comparison between different biosorbents. J Mater Environ Sci 6(5):1386–1399

    Google Scholar 

  • Afef NH, Chiraz CH, Houda MD, Habib G, Houda G (2012) Substitution of NO3− by NH4+ increases ammonium-assimilating enzyme activities and reduces the deleterious effects of cadmium on the growth of tomatoes. Fresenius Environ Bull 21:665–671

    CAS  Google Scholar 

  • Agrawal K, Ruhil T, Gupta VK, Verma P (2024) Microbial assisted multifaceted amelioration processes of heavy-metal remediation: a clean perspective toward sustainable and greener future. Crit Rev Biotechnol 44(3):429–447

    Article  PubMed  Google Scholar 

  • Agyeman PC, Ahado SK, Kingsley J, Kebonye NM, Biney JKM, Borůvka L, Vasat R, Kocarek M (2021) Source apportionment, contamination levels, and spatial prediction of potentially toxic elements in selected soils of the Czech Republic. Environ Geochem Health 43:601–620

    Article  PubMed  CAS  Google Scholar 

  • Ahanger MA, Qin C, Begum N, Maodong Q, Dong XX, El-Esawi M, El-Sheikh MA, Alatar AA, Zhang L (2019) Nitrogen availability prevents oxidative effects of salinity on wheat growth and photosynthesis by up-regulating the antioxidants and osmolytes metabolism, and secondary metabolite accumulation. BMC Plant Biol 19:1–12

    Article  CAS  Google Scholar 

  • Ahemad M (2015) Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review. 3 Biotech 5(2):111–121

    Article  PubMed  Google Scholar 

  • Ahmad A, Mustafa G, Rana A, Zia AR (2023) Improvements in bioremediation agents and their modified strains in mediating environmental pollution. Curr Microbiol 80(6):208

    Article  PubMed  CAS  Google Scholar 

  • Ahmed W, Tscharke B, Bertsch PM, Bibby K, Bivins A, Choi P, Clarke L, Dwyer J, Edson J, Nguyen TMH, O’Brien JW (2021) SARS-CoV-2 RNA monitoring in wastewater as a potential early warning system for COVID-19 transmission in the community: A temporal case study. Sci Total Environ 761:144216

    Article  PubMed  CAS  Google Scholar 

  • Akhtar S, Mahmood-ul-Hassan M, Ahmad R, Suthor V, Yasin M (2013) Metal tolerance potential of filamentous fungi isolated from soils irrigated with untreated municipal effluent. Soil Environ 32(1):55–62

    CAS  Google Scholar 

  • Akhter K, Ghous T, Andleeb S, Ejaz S, Khan BA, Ahmed MN (2017) Bioaccumulation of heavy metals by metal-resistant bacteria isolated from Tagetes minuta rhizosphere, growing in soil adjoining automobile workshops. Pak J Zool 49(5):1841–1846

  • Akinkunmi WA, Husaini AASA, Zulkharnain A, Tay MG, Roslan HA (2016) Mechanism of Biosorption of Pb (ii) and Cu (ii) ions using Dead Biomass of Fusarium equiseti strain UMAS and Penicillium citrinum strain UMAS B2. J Biochem Microbiol Biotechn 4(2):1–6

    Article  Google Scholar 

  • Akram M, Rashid H, Nasir A, Khursheed K (2021) Health risk assessment and heavy metal contamination levels in green chilli due to untreated wastewater irrigation in Chak Jhumra. Faisalabad J Clean WAS 5(1):05–09

    Article  Google Scholar 

  • Alaboudi KA, Ahmed B, Brodie G (2019) Effect of biochar on Pb, Cd and Cr availability and maize growth in artificial contaminated soil. Ann Agric Sci 64(1):95–102

    Article  Google Scholar 

  • Alamri SA, Siddiqui MH, Al-Khaishany MY, Nasir Khan M, Ali HM, Alaraidh IA, Alsahli AA, Al-Rabiah H, Mateen M (2018) Ascorbic acid improves the tolerance of wheat plants to lead toxicity. J Plant Interact 13(1):409–419

    Article  CAS  Google Scholar 

  • Albert Q, Leleyter L, Lemoine M, Heutte N, Rioult JP, Sage L, Baraud F, Garon D (2018) Comparison of tolerance and biosorption of three trace metals (Cd, Cu, Pb) by the soil fungus Absidia cylindrospora. Chemosphere 196:386–392

    Article  PubMed  CAS  Google Scholar 

  • Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ (2021) Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 9(3):42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Al-Hagara OE, Bayoumib RA, Aziz OAA, Mousad AM (2020) Biosorption and adsorption of some heavy metals by Fusarium sp. F6c isolate as affected by gamma irradiation and agricultural wastes. Sci Asia 46(1):1–37

    Google Scholar 

  • AlkhatibR MM, Abdo N, Tadros M, Al-Eitan L, Al-Hadid K (2019) Effect of lead on the physiological, biochemical and ultrastructural properties of Leucaena leucocephala. Plant Biol 21(6):1132–1139

    Article  Google Scholar 

  • Alotaibi BS, Khan M, Shamim S (2021) Unraveling the underlying heavy metal detoxification mechanisms of Bacillus species. Microorganisms 9(8):1628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alsamhary K (2023) Vermi-cyanobacterial remediation of cadmium-contaminated soil with rice husk biochar: An eco-friendly approach. Chemosphere 311:136931

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Bernal D, Contreras-Ramos SM, Trujillo-Tapia N, Olalde-Portugal V, Frías-Hernández JT, Dendooven L (2006) Effects of tanneries wastewater on chemical and biological soil characteristics. Appl Soil Ecol 33(3):269–277

    Article  Google Scholar 

  • Amaning Danquah C, Minkah PAB, Osei Duah Junior I, Amankwah KB, Somuah SO (2022) Antimicrobial compounds from microorganisms. Antibiotics 11(3):285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • An X, Zuo D, Wang F, Liang C (2022) Investigation on stabilization/solidification characteristics of lead-contaminated soil using innovative composite model of cement and soda residue. Environ Earth Sci 81(21):508

    Article  CAS  Google Scholar 

  • Anderson WC (ed) (1993) Soil washing/soil flushing (3). Annapolis. American Academy of Environmental Engineers, MD

    Google Scholar 

  • Aparicio JD, Raimondo EE, Saez JM, Costa-Gutierrez SB, Alvarez A, Benimeli CS, Polti MA (2022) The current approach to soil remediation: A review of physicochemical and biological technologies, and the potential of their strategic combination. J Environ Chem Eng 10(2):107141

    Article  CAS  Google Scholar 

  • Araki R, Murata J, Murata Y (2011) A novel barley yellow stripe 1-like transporter (HvYSL2) localized to the root endodermis transports metal–phytosiderophore complexes. Plant Cell Physiol 52(11):1931–1940

    Article  PubMed  CAS  Google Scholar 

  • Arregui G, Hipólito P, Pallol B, Lara-Dampier V, García-Rodríguez D, Varela HP, Tavakoli Zaniani P, Balomenos D, Paape T, Coba de la Peña T, Lucas MM (2021) Mercury-tolerant Ensifer medicae strains display high mercuric reductase activity and a protective effect on nitrogen fixation in Medicago truncatula nodules under mercury stress. Front Plant Sci 11:560768

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashraf U, Kanu AS, Mo Z, Hussain S, Anjum SA, Khan I, Abbas RN, Tang X (2015) Lead toxicity in rice: effects, mechanisms, and mitigation strategies—a mini review. Environ Sci Pollut Res 22:18318–18332

    Article  CAS  Google Scholar 

  • Ashraf MY, Roohi M, Iqbal Z, Ashraf M, Öztürk M, Gücel S (2016) Cadmium (Cd) and lead (Pb) induced changes in growth, some biochemical attributes, and mineral accumulation in two cultivars of mung bean [Vigna radiata (L.) Wilczek]. Commun Soil Sci Plant Anal 47(4):405–413

    CAS  Google Scholar 

  • Aslam F, Yasmin A, Sohail S (2020) Bioaccumulation of lead, chromium, and nickel by bacteria from three different genera isolated from industrial effluent. Int J Microbiol 23(2):253–261

    Article  CAS  Google Scholar 

  • ATSDR (2012a) Toxicological profile for cadmium. http://www.atsdr.cdc.gov/toxprofiles/tp5.pdf. Accessed 11 Apr 2024

  • Awasthi MK, Sarsaiya S, Wainaina S, Rajendran K, Awasthi SK, Liu T, Duan Y, Jain A, Sindhu R, Binod P, Pandey A (2021) Techno-economics and life-cycle assessment of biological and thermochemical treatment of bio-waste. Renew Sustain Energy Rev 144:110837

    Article  CAS  Google Scholar 

  • Aydin MH (2022) Rhizoctonia solani and its biological control. Türkiye Tarım Araşt Derg 9(1):118–135

    Google Scholar 

  • Ayele A, Haile S, Alemu D, Kamaraj M (2021) Comparative utilization of dead and live fungal biomass for the removal of heavy metal: a concise review. Sci World J 1:5588111

    Google Scholar 

  • Azizi I, Esmaielpour B, Fatemi H (2021) Exogenous nitric oxide on morphological, biochemical and antioxidant enzyme activity on savory (Satureja Hortensis L.) plants under cadmium stress. J Saudi Soc Agric Sci 20(6):417–423

    Google Scholar 

  • Bai YC, Chang YY, Hussain M, Lu B, Zhang JP, Song XB, Lei XS, Pei D (2020) Soil chemical and microbiological properties are changed by long-term chemical fertilizers that limit ecosystem functioning. Microorganisms 8(5):694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baldantoni D, Morra L, Zaccardelli M, Alfani A (2016) Cadmium accumulation in leaves of leafy vegetables. Ecotoxicol Environ Saf 123:89–94

    Article  PubMed  CAS  Google Scholar 

  • Bali S, Jamwal VL, Kohli SK, Kaur P, Tejpal R, Bhalla V, Ohri P, Gandhi SG, Bhardwaj R, Al-Huqail AA, Siddiqui MH (2019) Jasmonic acid application triggers detoxification of lead (Pb) toxicity in tomato through the modifications of secondary metabolites and gene expression. Chemosphere 235:734–748

    Article  PubMed  CAS  Google Scholar 

  • Banta G, Salibay C (2023) Heavy metal contamination in the soil and Taal Lake Post-Taal Volcano eruption. J Appl Sci Engineering Technol Edu 5(2):150–158

    Article  Google Scholar 

  • Barman MK, Bhattarai A, Saha B (2023) Applications of ion exchange resins in environmental remediation. Vietnam J Chem 61(5):533–550

    Article  CAS  Google Scholar 

  • Baselt RC, Cravey RH (1995) Disposition of Toxic Drugs and Chemicals in Man, 4th edn. Year Book Medical Publishers, Chicago, IL, pp 105–107

    Google Scholar 

  • Bashir A, Malik LA, Ahad S, Manzoor T, Bhat MA, Dar GN, Pandith AH (2019) Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ Chem Lett 17:729–754

    Article  CAS  Google Scholar 

  • Baskaran V, Dhivakar MR, Gunasegaran V (2020) Electrokinetic remediation of copper polluted soil concatenated with an adsorption zone. Environ Nanotechno Monit Manage 14:100395

    Google Scholar 

  • Beauvais-Flück R, Gimbert F, Méhault O, Cosio C (2017) Trophic fate of inorganic and methyl-mercury in a macrophyte-chironomid food chain. J Hazard Mater 338:140–147

    Article  PubMed  Google Scholar 

  • Belimov AA, Kunakova AM, Safronova VI, Stepanok VV, Yudkin LY, Alekseev YV, Kozhemyakov AP (2004) Employment of rhizobacteria for the inoculation of barley plants cultivated in soil contaminated with lead and cadmium. Microbiol 73(1):99–106

    Article  CAS  Google Scholar 

  • Bertagnolli C, Grishin A, Vincent T, Guibal E (2016) Recovering heavy metal ions from complex solutions using polyethylenimine derivatives encapsulated in alginate matrix. Ind Eng Chem Res 55:2461–2470

    Article  CAS  Google Scholar 

  • Betowski LD, Jones TL (1988) The analysis of organophosphorus pesticide samples by high-performance liquid chromatography/mass spectrometry and high-performance liquid chromatography/mass spectrometry/mass spectrometry. Environ Sci Technol 22(12):1430–1434

    Article  PubMed  CAS  Google Scholar 

  • Bhatia A, Singh SD, Kumar A (2015) Heavy metal contamination of soil, irrigation water and vegetables in peri-urban agricultural areas and markets of Delhi. Water Environ Res 87(11):2027–2034

    Article  PubMed  CAS  Google Scholar 

  • Binish MB, Sruthy S, Mohan M (2015) Effect of heavy metals (Pb, Cd, Cu) on the growth of sulphate reduction associated bacterium Clostridium bifermentans isolated from Cochin estuary, Southwest coast of India. Int J Mar Sci 5(50):1–5

    Google Scholar 

  • Bjuhr J (2007) Trace metals in soils irrigated with waste water in a periurban area downstream Hanoi City. Vietnam

    Google Scholar 

  • Boffetta P, Memeo L, Giuffrida D, Ferrante M, Sciacca S (2020) Exposure to emissions from Mount Etna (Sicily, Italy) and incidence of thyroid cancer: a geographic analysis. Sci Rep 10(1):21298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bondarenko O, Rõlova T, Kahru A, Ivask A (2008) Bioavailability of Cd, Zn and Hg in soil to nine recombinant luminescent metal sensor bacteria. Sensors 8(11):6899–6923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Botelho Junior AB, Dreisinger DB, Espinosa DC (2019) A review of nickel, copper, and cobalt recovery by chelating ion exchange resins from mining processes and mining tailings. Mini Metall Explor 36(1):199–213

    Google Scholar 

  • Brim H, McFarlan SC, Fredrickson JK, Minton KW, Zhai M, Wackett LP, Daly MJ (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18(1):85–90

    Article  PubMed  CAS  Google Scholar 

  • Burgess-Conforti JR (2016) Liming characteristics of a high-calcium, dry flue gas desulfurization by-product and its effects on runoff water quality. University of Arkansas

    Google Scholar 

  • Bushra S, Faizan S, Mushtaq Z, Hussain A, Hakeem KR (2022) Effect of cadmium stress on the growth, physiology, stress markers, antioxidants and stomatal behaviour of two genotypes of chickpea (Cicer arietinum L.). Phyto Int J Exp Bot 91(9):1987–2004

    Google Scholar 

  • Cao Y, Pi H, Chandrangsu P, Li Y, Wang Y, Zhou H, Xiong H, Helmann JD, Cai Y (2018) Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Sci Rep 8(1):4360

    Article  PubMed  PubMed Central  Google Scholar 

  • Carne G, Leconte S, Sirot V, Breysse N, Badot PM, Bispo A, Deportes IZ, Dumat C, Rivière G, Crépet A (2021) Mass balance approach to assess the impact of cadmium decrease in mineral phosphate fertilizers on health risk: The case-study of French agricultural soils. Sci Total Environ 760:143374

    Article  PubMed  CAS  Google Scholar 

  • Castagno LN, Sannazzaro AI, Gonzalez ME, Pieckenstain FL, Estrella MJ (2021) Phosphobacteria as key actors to overcome phosphorus deficiency in plants. Ann Appl Biol 178(2):256–267

    Article  CAS  Google Scholar 

  • Chang J, Duan Y, Dong J, Shen S, Si G, He F, Yang Q, Chen J (2019) Bioremediation of Hg-contaminated soil by combining a novel Hg-volatilizing Lecythophora sp. fungus, DC-F1, with biochar: Performance and the response of soil fungal community. Sci Total Environ 671:676–684

    Article  PubMed  CAS  Google Scholar 

  • Chen SY, Wang SY (2019) Effects of solid content and substrate concentration on bioleaching of heavy metals from sewage sludge using Aspergillus niger. Metals 9(9):994

    Article  CAS  Google Scholar 

  • Chen XW, Kang Y, So PS, Ng CWW, Wong MH (2018) Arbuscular mycorrhizal fungi increase the proportion of cellulose and hemicellulose in the root stele of vetiver grass. Plant Soil 425:309–319

    Article  CAS  Google Scholar 

  • Chen X, Kumari D, Cao CJ, Plaza G, Achal V (2019) A review on remediation technologies for nickel-contaminated soil. Hum Ecol Risk Assess 26:571

    Article  Google Scholar 

  • Chen SH, Cheow YL, Ng SL, Ting ASY (2020) Bioaccumulation and biosorption activities of indoor metal-tolerant Penicillium simplicissimum for removal of toxic metals. Int J Environ Res 14(2):235–242

    Article  CAS  Google Scholar 

  • Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:752708

    Article  Google Scholar 

  • Çikili Y, Samet H, Çiçek N (2020) Response of sunflower ( Helianthus annuus L.) at early growth stage to cadmium exposure. Türk Tarım ve Doğa Bilimleri Dergisi 7(4):1098–1107

    Article  Google Scholar 

  • Ciopec M, Pascu B, Negrea P (2023) Inductively coupled plasma optical spectroscopy and atomic absorption spectroscopy. Microb Electrochem Technol Fundam Appl 1:201–228

    Article  Google Scholar 

  • Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36(8):609–662

    Article  PubMed  CAS  Google Scholar 

  • Conner JR, Hoeffner SL (1998) A critical review of stabilization/solidification technology. Crit Rev Environ Sci Technol 28(4):397–462

    Article  CAS  Google Scholar 

  • CWC (2019) Water and related statistics. Water related statistics directorate, information system organisation, water planning & projects wing, central water commission. New Delhi, India. http://cwc.gov.in/sites/default/files/water-and-related-statistics-2019_3.pdf. Accessed 21 July 2021

  • Czupryński P, Płotka M, Glamowski P, Żukowski W, Bajda T (2022) An assessment of an ion exchange resin system for the removal and recovery of Ni, Hg, and Cr from wet flue gas desulphurization wastewater—a pilot study. RSC Adv 12(9):5145–5156

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalyan E, Yüzbaşıoğlu E, Akpınar I (2020) Physiological and biochemical changes in plant growth and different plant enzymes in response to lead stress. In: Gupta D, Chatterjee S, Walther C (eds) Lead in plants and the environment. Radionuclides and heavy metals in the environment. Springer, Cham

  • Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177(1–3):323–330

    Article  PubMed  CAS  Google Scholar 

  • Das S, Raj R, Mangwani N, Dash HR, Chakraborty J (2014) 2-heavy metals and hydrocarbons: adverse effects and mechanism of toxicity. In: Microbial biodegradation and bioremediation. Elsevier, pp 23–54

  • Deng X, Jia P (2011) Construction and characterization of a photosynthetic bacterium genetically engineered for Hg2+ uptake. Bioresour Technol 102(3):3083–3088

    Article  PubMed  CAS  Google Scholar 

  • Deng X, Yi XE, Liu G (2007) Cadmium removal from aqueous solution by gene-modified Escherichia coli JM109. J Hazard Mater 139(2):340–344

    Article  PubMed  CAS  Google Scholar 

  • Devos Y, Aguilera J, Diveki Z, Gomes A, Liu Y, Paoletti C, Du Jardin P, Herman L, Perry JN, Waigmann E (2014) EFSA’s scientific activities and achievements on the risk assessment of genetically modified organisms (GMOs) during its first decade of existence: looking back and ahead. Transgenic Res 23:1–25

    Article  PubMed  CAS  Google Scholar 

  • Dhaliwal SS, Taneja PK, Singh J, Bhatti SS, Singh R (2020) Cadmium accumulation potential of Brassica species grown in metal spiked loamy sand soil. Soil Sediment Contam Int J 29(6):638–649

    Article  CAS  Google Scholar 

  • Diao J, Zhao B, Qiao H, Ma F, Huang L (2017) Dissolution of Cu(OH)2 by a novel chelating surfactant 1-lauroyl ethylenediamine triacetate. FEB-Fresenius Environ Bull 26:4817–4824

    CAS  Google Scholar 

  • Diep P, Mahadevan R, Yakunin AF (2018) Heavy metal removal by bioaccumulation using genetically engineered microorganisms. Front Bioeng Biotechnol 6:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Dimkić I, Janakiev T, Petrović M, Degrassi G, Fira D (2022) Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms-A review. Physiol Mol Plant Pathol 117:101754

    Article  Google Scholar 

  • Dissanayake DMDC, Kumari WMNH, Chandrasekharan NV, Wijayarathna CD (2023) Isolation of heavy metal-resistant Staphylococcus epidermidis strain TWSL_22 and evaluation of heavy metal bioremediation potential of recombinant E coli cloned with isolated cadD. FEMS Microbiol Lett 370:fnad092

    Article  PubMed  Google Scholar 

  • Divya J, Belagali S (2014) Quantification of chemical fertilizers residues in soil and water samples collected around agricultural areas of Mysore taluk, Karnataka. India Int J Curr Eng Technol 4(3):1314–1323

    Google Scholar 

  • Dixit VK, Misra S, Mishra SK, Joshi N, Chauhan PS (2021) Rhizobacteria‐mediated bioremediation: insights and future perspectives. In: Soil bioremediation: an approach towards sustainable technology. Wiley, pp 193–211

  • Duan P, Khan S, Ali N, Shereen MA, Siddique R, Ali B, Iqbal HM, Nabi G, Sajjad W, Bilal M (2020) Biotransformation fate and sustainable mitigation of a potentially toxic element of mercury from environmental matrices. Arab J Chem 13(9):6949–6965

    Article  CAS  Google Scholar 

  • Ducic T, Polle A (2005) Transport and detoxification of manganese and copper in plants. Braz J Plant Physiol 17:103–112

    Article  CAS  Google Scholar 

  • Dushyantha N, Batapola N, Ilankoon IMSK, Rohitha S, Premasiri R, Abeysinghe B, Dissanayake K (2020) The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geol Rev 122:103521

    Article  Google Scholar 

  • Eaton MC, Larson RJ, Tittlebaum ME, Cartledge FK, Chalasani D (1985) Microscopic characterization of the solidification/stabilization of organic hazardous wastes. Am Soc Mech Eng Pap (United States) 85(CONF-850201-)

  • Eckley CS, Gilmour CC, Janssen S, Luxton TP, Randall PM, Whalin L, Austin C (2020) The assessment and remediation of mercury contaminated sites: A review of current approaches. Sci Total Environ 707:136031

    Article  PubMed  CAS  Google Scholar 

  • Ekawanti A, Krisnayanti BD (2015) Effect of mercury exposure on renal function and hematological parameters among artisanal and small-scale gold miners at Sekotong, West Lombok. Indonesia J Health Pollut 5(9):25–32

    Article  PubMed  Google Scholar 

  • Ekwere AS, Edet BB (2021) Temporal variations of heavy metals in sediment, soil and dust particulates across the rock quarrying districts of the Oban Massif. Southeastern Nigeria Environ Nanotechnol Monit Manag 15:100431

    CAS  Google Scholar 

  • El-Bondkly AMA, El-Gendy MMAA (2022) Bioremoval of some heavy metals from aqueous solutions by two different indigenous fungi Aspergillus sp. AHM69 and Penicillium sp. AHM96 isolated from petroleum refining wastewater. Heliyon 8(7):e09854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El-Gendy MMAA, Ten NM, Ibrahim HAEH, Abd El-Baky DH (2017) Heavy metals biosorption from aqueous solution by endophytic Drechslera hawaiiensis of Morus alba L. derived from heavy metals habitats. Mycobiology 45(2):73–83

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Maraghy SS, Tohamy TA, Hussein KA (2020) Expression of SidD gene and physiological characterization of the rhizosphere plant growth-promoting yeasts. Heliyon 6(7):e04384

    Article  PubMed  PubMed Central  Google Scholar 

  • Emenike CU, Liew W, Fahmi MG, Jalil KN, Pariathamby A, Hamid FS (2017) Optimal removal of heavy metals from leachate contaminated soil using bioaugmentation process. CLEAN-Soil Air Water 45(2):1500802

    Article  Google Scholar 

  • Essa MH, Mu’azu ND, Lukman S, Bukhari A (2015) Application of box-behnken design to hybrid electrokinetic-adsorption removal of mercury from contaminated saline-sodic clay soil. Soil Sediment Contam Int J 24(1):30–48

    Article  CAS  Google Scholar 

  • Fan Y, Li Y, Li H, Cheng F (2018) Evaluating heavy metal accumulation and potential risks in soil-plant systems applied with magnesium slag-based fertilizer. Chemosphere 197:382–388

    Article  PubMed  CAS  Google Scholar 

  • Fang Y, Wang Y, Su X, Liu H, Chen H, Chen Z, Jin L, He N (2022) A miniaturized and integrated dual-channel fluorescence module for multiplex real-time PCR in the portable nucleic acid detection system. Front Bioeng Biotechnol 10:996456

    Article  PubMed  PubMed Central  Google Scholar 

  • Farooqi ZUR, Din WMU, Hussain MM (2022) Microbial responses under climate change scenarios: adaptation and mitigations. In: Climate change and microbial diversity, 1st edn. Taylor and Francis group, Apple Academic Press, pp 1–20

  • Fasani E, Manara A, Martini F, Furini A, DalCorso G (2018) The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals. Plant Cell Environ 41(5):1201–1232

    Article  PubMed  CAS  Google Scholar 

  • Fatima G, Raza AM, Hadi N, Nigam N, Mahdi AA (2019) Cadmium in human diseases: It’s more than just a mere metal. Indian J Clin Biochem 34:371–378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feng W, Guo Z, Xiao X, Peng C, Shi L, Ran H, Xu W (2019) Atmospheric deposition as a source of cadmium and lead to soil-rice system and associated risk assessment. Ecotoxicol Environ Saf 180:160–167

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Zhang L, Li X, Wang L, Yusef KK, Gao H, Tian D (2022) Remediation of lead contamination by Aspergillus Niger and phosphate rocks under different nitrogen sources. Agronomy 12(7):1639

  • Ferrari M, Dal Cortivo C, Panozzo A, Barion G, Visioli G, Giannelli G, Vamerali T (2021) Comparing Soil vs. Foliar nitrogen supply of the whole fertilizer dose in common wheat. Agronomy 11(11):2138

    Article  CAS  Google Scholar 

  • Firdaus B, Shafiq M, Jamil S (2012) Role of plant growth regulators and a saprobic fungus in enhancement of metal phytoextraction potential and stress alleviation in pearl millet. J Hazard Mater 237:186–193

    Article  Google Scholar 

  • Firmanda A, Fahma F, Syamsu K, Suryanegara L, Wood K (2022) Controlled/slow-release fertilizer based on cellulose composite and its impact on sustainable agriculture. Biofuels Bioprod Biorefin 16(6):1909–1930

    Article  CAS  Google Scholar 

  • Foong LK, Foroughi MM, Mirhosseini AF, Safaei M, Jahani S, Mostafavi M, Ebrahimpoor N, Sharifi M, Varma RS, Khatami M (2020) Applications of nano-materials in diverse dentistry regimes. RSC Adv 10(26):15430–15460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fosso-Kankeu E (2018) Microbial metalloproteins-based responses in the development of biosensors for the monitoring of metal pollutants in the environment. In: Heavy metals in the environment: microorganisms and bioremediation, 1st edn. Taylor and Francis group, CRC Press, pp 43–72

  • François F, Lombard C, Guigner JM, Soreau P, Brian-Jaisson F, Martino G, Vandervennet M, Garcia D, Molinier AL, Pignol D, Peduzzi J (2012) Isolation and characterization of environmental bacteria capable of extracellular biosorption of mercury. Appl Environ Microbiol 78(4):1097–1106

    Article  PubMed  PubMed Central  Google Scholar 

  • Frye MD (2022) Using portable X-ray fluorescence to predict physical and chemical properties of california soils(Order No. 30507280). Available from ProQuest Dissertations & Theses Global. (2808598983). Retrieved from https://www.proquest.com/dissertations-theses/using-portable-x-ray-fluorescence-predict/docview/2808598983/se-2

  • Gadd GM (2013) Microbial roles in mineral transformations and metal cycling in the earth’s critical zone. In: Xu J, Sparks D (eds) Molecular environmental soil science. Progress in soil science. Springer, Dordrecht

  • Gao MY, Chen XW, Huang WX, Wu L, Yu ZS, Xiang L, Mo CH, Li YW, Cai QY, Wong MH, Li H (2021) Cell wall modification induced by an arbuscular mycorrhizal fungus enhanced cadmium fixation in rice root. J Hazard Mater 416:125894

    Article  PubMed  CAS  Google Scholar 

  • Gautam A, Kushwaha A, Rani R (2022) Reduction of Hexavalent Chromium [Cr(VI)] by heavy metal tolerant Bacterium Alkalihalobacillus clausii CRA1 and its toxicity assessment through flow cytometry. Curr Microbiol 79(1):33

    Article  CAS  Google Scholar 

  • Gelbicova T, Florianova M, Hluchanova L, Kalova A, Korena K, Strakova N, Karpiskova R (2021) Comparative analysis of genetic determinants encoding cadmium, arsenic, and benzalkonium chloride resistance in Listeria monocytogenes of human, food, and environmental origin. Front Microbiol 11:599882

    Article  PubMed  PubMed Central  Google Scholar 

  • George B, Nirmal Kumar JI, Kumar RN, Sajish PR (2012) Biosorption potentiality of living Aspergillus niger Tiegh in removing heavy metal from aqueous solution. Bioremediat J 16(4):195–203

    Article  CAS  Google Scholar 

  • Gharehbaghli N, Sepehri A (2022) The ameliorative effect of hydrogen sulfide on cadmium toxicity and oxidative stress damage in garlic (Allium sativum) seedlings. S Afr J Bot 150:161–170

    Article  CAS  Google Scholar 

  • Goldberg S (2013) Surface complexation modelling. In: Reference module in earth system and environment science. USDA-ARS U.S, Salinity Laboratory, Riverside, CA

  • González D, Robas M, Probanza A, Jiménez PA (2021) Selection of mercury-resistant PGPR strains using the BMRSI for bioremediation purposes. Int J Environ Res Public Health 18(18):9867

    Article  PubMed  PubMed Central  Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 5:355–377

    Article  PubMed  Google Scholar 

  • Goyal V, Kohli I, Ambastha V, Das P, Singh PK, Varma A, Pandey R, Joshi NC (2022) Synthetic biology tools: engineering microbes for biotechnological applications. In: New and future developments in microbial biotechnology and bioengineering. Elsevier, pp 369–398

  • Grandjean P, Poulsen LK, Heilmann C, Steuerwald U, Weihe P (2010) Allergy and sensitization during childhood associated with prenatal and lactational exposure to marine pollutants. Environ Health Perspect 118(10):1429–1433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grimison C, Knight ER, Nguyen TMH, Nagle N, Kabiri S, Bräunig J, Navarro DA, Kookana RS, Higgins CP, McLaughlin MJ, Mueller JF (2023) The efficacy of soil washing for the remediation of per-and poly-fluoroalkyl substances (PFASs) in the field. J Hazard Mater 445:130441

    Article  PubMed  CAS  Google Scholar 

  • Gupta DK, Huang HG, Nicoloso FT, Schetinger MR, Farias JG, Li TQ, Razafindrabe BHN, Aryal N, Inouhe M (2013) Effect of Hg, As and Pb on biomass production, photosynthetic rate, nutrients uptake and phytochelatin induction in Pfaffia glomerata. Ecotoxicology 22:1403–1412

    Article  PubMed  CAS  Google Scholar 

  • Gurdeep KAUR, Reddy MS (2015) Effects of phosphate-solubilizing bacteria, rock phosphate and chemical fertilizers on maize-wheat cropping cycle and economics. Pedosphere 25(3):428–437

    Article  Google Scholar 

  • Gutierrez-Ruiz M, Muro-Puente A, Ceniceros-Gómez AE, Amaro-Ramírez D, Pérez-Manzanera L, Martínez-Jardines LG, Romero F (2022) Acid spill impact on Sonora River basin. Part I. sediments: Affected area, pollutant geochemistry and health aspects. J Environ Manag 314:115032

    Article  CAS  Google Scholar 

  • Hack HRGK (2020) Weathering, erosion, and susceptibility to weathering. In: Kanji M, He M, Ribeiro e Sousa L (eds) Soft rock mechanics and engineering . Springer, Cham

  • Hadi F, Bano A, Fuller MP (2010) The improved phytoextraction of lead (Pb) and the growth of maize (Zea mays L.): the role of plant growth regulators (GA3 and IAA) and EDTA alone and in combinations. Chemosphere 80(4):457–462

    Article  PubMed  CAS  Google Scholar 

  • Halim MA, Rahman MM, Megharaj M, Naidu R (2020) Cadmium immobilization in the rhizosphere and plant cellular detoxification: Role of plant-growth-promoting rhizobacteria as a sustainable solution. J Agric Food Chem 68(47):13497–13529

    Article  PubMed  CAS  Google Scholar 

  • Hamanaka RB, Mutlu GM (2018) Particulate matter air pollution: effects on the cardiovascular system. Front Endocrinol 9:412302

    Article  Google Scholar 

  • Hao L, Zhang Z, Hao B, Diao F, Zhang J, Bao Z, Guo W (2021) Arbuscular mycorrhizal fungi alter microbiome structure of rhizosphere soil to enhance maize tolerance to La. Ecotoxicol Environ Saf 212:111996

    Article  PubMed  CAS  Google Scholar 

  • Hassan A, Periathamby A, Ahmed A, Innocent O, Hamid FS (2020) Effective bioremediation of heavy metal–contaminated landfill soil through bioaugmentation using consortia of fungi. J Soils Sediments 20:66–80

    Article  CAS  Google Scholar 

  • Hazen RM, Golden J, Downs RT, Hystad G, Grew ES, Azzolini D, Sverjensky DA (2012) Mercury (Hg) mineral evolution: A mineralogical record of supercontinent assembly, changing ocean geochemistry, and the emerging terrestrial biosphere. Am Mineral 97(7):1013–1042

    Article  CAS  Google Scholar 

  • He F, Gao J, Pierce E, Strong PJ, Wang H, Liang L (2015) In situ remediation technologies for mercury-contaminated soil. Environ Sci Pollut Res 22:8124–8147

    Article  CAS  Google Scholar 

  • He H, Tam NF, Yao A, Qiu R, Li WC, Ye Z (2017) Growth and Cd uptake by rice (Oryza sativa) in acidic and Cd-contaminated paddy soils amended with steel slag. Chemosphere 189:247–254

    Article  PubMed  CAS  Google Scholar 

  • He S, Niu Y, Xing L, Liang Z, Song X, Ding M, Huang W (2024) Research progress of the detection and analysis methods of heavy metals in plants. Front Plant Sci 15:1310328

    Article  PubMed  PubMed Central  Google Scholar 

  • Heidari P, Panico A (2020) Sorption mechanism and optimization study for the bioremediation of Pb(II) and Cd(II) contamination by two novel isolated strains Q3 and Q5 of Bacillus sp. Int J Environ Res Public Health 17(11):4059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hertz-Picciotto I (2000) The evidence that lead increases the risk for spontaneous abortion. Am J Ind Med 38(3):300–309

    Article  PubMed  CAS  Google Scholar 

  • Higham DP, Sadler PJ, Scawen MD (1986) Cadmium-binding proteins in Pseudomonas putida: pseudothioneins. Environ Health Perspect 65:5–11

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hlihor RM, Figueiredo H, Tavares T, Gavrilescu M (2017) Biosorption potential of dead and living Arthrobacter viscosus biomass in the removal of Cr(VI): batch and column studies. Process Saf Environ Prot 108:44–56

    Article  CAS  Google Scholar 

  • Hong YS, Kim YM, Lee KE (2012) Methylmercury exposure and health effects. J Prev Med Public Health 45(6):353

    Article  PubMed  PubMed Central  Google Scholar 

  • Hosseinniaee S, Jafari M, Tavili A, Zare S, Cappai G (2023) Investigating metal pollution in the food chain surrounding a lead-zinc mine (Northwestern Iran); an evaluation of health risks to humans and animals. Environ Monit Assess 195(8):946

    Article  PubMed  CAS  Google Scholar 

  • Hrynkiewicz K, Złoch M, Kowalkowski T, Baum C, Buszewski B (2018) Efficiency of microbially assisted phytoremediation of heavy-metal contaminated soils. Environ Rev 26(3):316–332

    Article  CAS  Google Scholar 

  • Huang F, Dang Z, Guo CL, Lu GN, Gu RR, Liu HJ, Zhang H (2013) Biosorption of Cd(II) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil. Colloids Surf B Biointerfaces 107:11–18

    Article  PubMed  CAS  Google Scholar 

  • Huang F, Wang ZH, Cai YX, Chen SH, Tian JH, Cai KZ (2018) Heavy metal bioaccumulation and cation release by growing Bacillus cereus RC-1 under culture conditions. Ecotoxicol Environ Saf 157:216–226

    Article  PubMed  CAS  Google Scholar 

  • Hummel M, Hallahan BF, Brychkova G, Ramirez-Villegas J, Guwela V, Chataika B, Curley E, McKeown PC, Morrison L, Talsma EF, Beebe S (2018) Reduction in nutritional quality and growing area suitability of common bean under climate change induced drought stress in Africa. Sci Rep 8(1):16187

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain I, Aleti G, Naidu R, Puschenreiter M, Mahmood Q, Rahman MM, Wang F, Shaheen S, Syed JH, Reichenauer TG (2018) Microbe and plant assisted-remediation of organic xenobiotics and its enhancement by genetically modified organisms and recombinant technology: a review. Sci Total Environ 628:1582–1599

    Article  PubMed  Google Scholar 

  • Igiri BE, Okoduwa SI, Idoko GO, Akabuogu EP, Adeyi AO, Ejiogu IK (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol 2018:2568038

    Article  PubMed  PubMed Central  Google Scholar 

  • Iloms E, Ololade OO, Ogola HJ, Selvarajan R (2020) Investigating industrial effluent impact on municipal wastewater treatment plant in Vaal, South Africa. Int J Environ Res Public Health 17(3):1096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Imran M, Das KR, Naik MM (2019) Co-selection of multi-antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: An emerging health threat. Chemosphere 215:846–857

    Article  PubMed  CAS  Google Scholar 

  • Imron MF, Kurniawan SB, Abdullah SRS (2021) Resistance of bacteria isolated from leachate to heavy metals and the removal of Hg by Pseudomonas aeruginosa strain FZ-2 at different salinity levels in a batch biosorption system. Sustain Environ Res 31(1):1–13

    Article  Google Scholar 

  • Jaiswal S, Shukla P (2020) Alternative strategies for microbial remediation of pollutants via synthetic biology. Front Microbiol 11:522718

    Article  Google Scholar 

  • Jalloh MA, Chen J, Zhen F, Zhang G (2009) Effect of different N fertilizer forms on antioxidant capacity and grain yield of rice growing under Cd stress. J Hazard Mater 162(2–3):1081–1085

    Article  PubMed  CAS  Google Scholar 

  • Jana S, Bandyopadhyay A, Datta S, Bhattacharya D, Jana D (2021) Emerging properties of carbon based 2D material beyond graphene. J Phys Condens Matter 34(5):053001

    Article  Google Scholar 

  • Janssen DB, Stucki G (2020) Perspectives of genetically engineered microbes for groundwater bioremediation. Environ Sci Process Impacts 22(3):487–499

    Article  PubMed  CAS  Google Scholar 

  • Javanbakht V, Alavi SA, Zilouei H (2014) Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Sci Technol 69(9):1775–1787

    Article  PubMed  CAS  Google Scholar 

  • Jayakumar M, Surendran U, Raja P, Kumar A, Senapathi V (2021) A review of heavy metals accumulation pathways, sources and management in soils. Arab J Geosci 14(20):2156

    Article  CAS  Google Scholar 

  • Jiang Z, Zhang Z, Duan S, Lv C, Dai Z (2021) Genesis of the sediment-hosted Haerdaban Zn-Pb deposit, Western Tianshan, NW China: Constraints from textural, compositional and sulfur isotope variations of sulfides. Ore Geol Rev 139:104527

    Article  Google Scholar 

  • Jing X, Lu T, Sun F, Xie J, Ma D, Wang X, Dong Q (2023) Microbial transformation to remediate mercury pollution: strains isolation and laboratory study. Int J Environ Sci Technol 20(3):3039–3048

    Article  CAS  Google Scholar 

  • Jones L, Ronan J, McHugh B, McGovern E, Regan F (2015) Emerging priority substances in the aquatic environment: a role for passive sampling in supporting WFD monitoring and compliance. Anal Methods 7(19):7976–7984

    Article  CAS  Google Scholar 

  • Jong MC, Harwood CR, Blackburn A, Snape JR, Graham DW (2020) Impact of redox conditions on antibiotic resistance conjugative gene transfer frequency and plasmid fate in wastewater ecosystems. Environ Sci Technol 54(23):14984–14993

    Article  PubMed  CAS  Google Scholar 

  • Joshi S, Gangola S, Bhandari G, Bhandari NS, Nainwal D, Rani A, Malik S, Slama P (2023) Rhizospheric bacteria: the key to sustainable heavy metal detoxification strategies. Front Microbiol 14:1229828

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung MC (2008) Heavy metal concentrations in soils and factors affecting metal uptake by plants in the vicinity of a Korean Cu-W mine. Sensors 8(4):2413–2423

    Article  PubMed  PubMed Central  Google Scholar 

  • Kabata-Pendias A (2001) Trace elements in soils and plants, 3rd edn. CRC Press LLC, Boca Raton

    Google Scholar 

  • Kafle A, Timilsina A, Gautam A, Adhikari K, Bhattarai A, Aryal N (2022) Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environmental Advances 8:100203

    Article  CAS  Google Scholar 

  • Kagami T, Narita T, Kuroda M, Notaguchi E, Yamashita M, Sei K, Soda S, Ike M (2013) Effective selenium volatilization under aerobic conditions and recovery from the aqueous phase by Pseudomonas stutzeri NT-I. Water Res 47(3):1361

    Article  PubMed  CAS  Google Scholar 

  • Kalayu G (2019) Phosphate solubilizing microorganisms: promising approach as biofertilizers. Int J Agron 2019:1–7

    Article  Google Scholar 

  • Kang SH, Singh S, Kim JY, Lee W, Mulchandani A, Chen W (2007) Bacteria metabolically engineered for enhanced phytochelatin production and cadmium accumulation. Appl Environ Microbiol 73(19):6317–6320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanwal A, Farhan M, Sharif F, Hayyat MU, Shahzad L, Ghafoor GZ (2020) Effect of industrial wastewater on wheat germination, growth, yield, nutrients and bioaccumulation of lead. Sci Rep 10(1):1–9

    Article  Google Scholar 

  • Karlsson S, Meili M, Bergstroem U (2002) Bioaccumulation factors in aquatic ecosystems. A critical review, Sweden

  • Kaur G, Kaur R, Boparai JK, Sharma VK, Sharma PK (2017) Investigating the heavy metals and pesticides concentration in agricultural soil and groundwater of Mansa district of Punjab, India: Insights into its impact on human health. Int J Innovat Res Sci Eng 3:179–187

    Google Scholar 

  • Kaushik CP (2014) Indian program for vitrification of high level radioactive liquid waste. Procedia Mater Sci 7:16–22

    Article  CAS  Google Scholar 

  • Khan A, Singh P, Srivastava A (2018) Synthesis, nature and utility of universal iron chelator–Siderophore: A review. Microbiol Res 212:103–111

    Article  PubMed  Google Scholar 

  • Khan I, Aftab M, Shakir S, Ali M, Qayyum S, Rehman MU, Haleem KS, Touseef I (2019) Mycoremediation of heavy metal (Cd and Cr)–polluted soil through indigenous metallotolerant fungal isolates. Environ Monit Assess 191(9):1–11

    Article  Google Scholar 

  • Kharytonov M, Martynova N, Babenko M, Rula I, Ungureanu N, Ștefan V (2023) Production of sweet sorghum bio-feedstock on technosol using municipal sewage sludge treated with flocculant. Ukraine Agriculture 13(6):1129

    Article  CAS  Google Scholar 

  • Khatib I, Rychter P, Falfushynska H (2022) Pesticide pollution: detrimental outcomes and possible mechanisms of fish exposure to common organophosphates and triazines. J Xenobiotics 12(3):236–265

    Article  CAS  Google Scholar 

  • Khatun J, Intekhab A, Dhak D (2022) Effect of uncontrolled fertilization and heavy metal toxicity associated with arsenic (As), lead (Pb) and cadmium (Cd), and possible remediation. Toxicology 477:153274

  • Khullar S, Reddy MS (2019) Cadmium induced glutathione bioaccumulation mediated by γ-glutamylcysteine synthetase in ectomycorrhizal fungus Hebeloma cylindrosporum. Biometals 32(1):101–110

    Article  PubMed  CAS  Google Scholar 

  • Kim SK, Lee BS, Wilson DB, Kim EK (2005) Selective cadmium accumulation using recombinant Escherichia coli. J Biosci Bioeng 99(2):109–114

    Article  PubMed  CAS  Google Scholar 

  • Kinuthia GK, Ngure V, Beti D, Lugalia R, Wangila A, Kamau L (2020) Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: community health implication. Sci Rep 10(1):8434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kirkelund GM, Jensen PE, Villumsen A, Ottosen LM (2010) Test of electrodialytic upgrading of MSWI APC residue in pilot scale: focus on reduced metal and salt leaching. J Appl Electrochem 40:1049–1060

    Article  CAS  Google Scholar 

  • Kiyono M, Pan-Hou H (1999) DNA sequence and expression of a defective mer operon from Pseudomonas K-62 plasmid pMR26. Biol Pharm Bull 22(9):910–914

    Article  PubMed  CAS  Google Scholar 

  • Klapstein SJ, O’Driscoll NJ (2018) Methylmercury biogeochemistry in freshwater ecosystems: a review focusing on DOM and photodemethylation. Bull Environ Contam Toxicol 100:14–25

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63(1):131–152

    Article  PubMed  CAS  Google Scholar 

  • Kolseth AK, D’Hertefeldt T, Emmerich M, Forabosco F, Marklund S, Cheeke TE, Hallin S, Weih M (2015) Influence of genetically modified organisms on agro-ecosystem processes. Agric Ecosyst Environ 214:96–106

    Article  Google Scholar 

  • Kopru S, Soylak M (2024) Inductively coupled plasma-mass spectrometry (ICP-MS) detection of trace metal contents of children cosmetics. Opt Quantum Electron 56(3):399

    Article  CAS  Google Scholar 

  • Korohoda W, Wilk A (2008) Cell electrophoresis—a method for cell separation and research into cell surface properties. Cell Mol Biol Lett 13:312–326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Korotkova NA, Baranovskaya VB, Petrova KV (2022) Microwave digestion and ICP-MS determination of major and trace elements in waste Sm-Co magnets. Metals 12(8):1308

    Article  CAS  Google Scholar 

  • Kulshreshtha A, Agrawal R, Barar M, Saxena S (2014) A review on bioremediation of heavy metals in contaminated water. IOSR J Environ Sci Toxicol Food Technol (IOSR-JESTFT) 8(7):44–50

    Article  Google Scholar 

  • Kumar V, Dwivedi SK (2019) Hexavalent chromium reduction ability and bioremediation potential of Aspergillus flavus CR500 isolated from electroplating wastewater. Chemosphere 237:124567

    Article  PubMed  CAS  Google Scholar 

  • Kumar SS, Kumar A, Singh S, Malyan SK, Baram S, Sharma J, Singh R, Pugazhendhi A (2020) Industrial wastes: Fly ash, steel slag and phosphogypsum-potential candidates to mitigate greenhouse gas emissions from paddy fields. Chemosphere 241:124824

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Rout C, Singh J, Saharan Y, Goyat R, Umar A, Akbar S, Baskoutas S (2023) A review on the clean-up technologies for heavy metal ions contaminated soil samples. Heliyon 9(5):e15472

  • Kuo SL, Wu EMY (2021) Remediation efficiency of the in situ vitrification method at an unidentified-waste and groundwater treatment site. Water 13(24):3594

    Article  CAS  Google Scholar 

  • Kurniawan SB, Ramli NN, Said NS, Alias J, Imron MF, Abdullah SR, Othman AR, Purwanti IF, Hasan HA (2022) Practical limitations of bioaugmentation in treating heavy metal contaminated soil and role of plant growth promoting bacteria in phytoremediation as a promising alternative approach. Heliyon 8(4):e08995

  • Laperche V, Lemière B (2020) Possible pitfalls in the analysis of minerals and loose materials by portable XRF, and how to overcome them. Minerals 11(1):33

    Article  Google Scholar 

  • Lee SW, Glickmann E, Cooksey DA (2001) Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Appl Environ Microbiol 67(4):1437–1444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li W, Zhang G (2022) Detection and various environmental factors of antibiotic resistance gene horizontal transfer. Environ Res 212:113267

    Article  PubMed  CAS  Google Scholar 

  • Li C, Xu Y, Jiang W, Dong X, Wang D, Liu B (2013) Effect of NaCl on the heavy metal tolerance and bioaccumulation of Zygosaccharomyces rouxii and Saccharomyces cerevisiae. Bioresour Technol 143:46–52

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Wang L, Meng J, Liu X, Xu J, Wang F, Brookes P (2018) Zeolite-supported nanoscale zero-valent iron: New findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueous solution and soil. J Hazard Mater 344:1–11

    Article  PubMed  CAS  Google Scholar 

  • Li B, Zhang T, Yang Z (2019) Immobilizing unicellular microalga on pellet-forming filamentous fungus: Can this provide new insights into the remediation of arsenic from contaminated water? Bioresour Technol 284:231–239

    Article  PubMed  CAS  Google Scholar 

  • Liaquat F, Haroon U, Munis MFH, Arif S, Khizar M, Ali W, Shengquan C, Qunlu L (2021) Efficient recovery of metal tolerant fungi from the soil of industrial area and determination of their biosorption capacity. Environ Technol Innov 21:101237

    Article  CAS  Google Scholar 

  • Lin X, Mou R, Cao Z, Xu P, Wu X, Zhu Z, Chen M (2016) Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains. Sci Total Environ 569:97–104

    Article  PubMed  Google Scholar 

  • Liu S, Zhang F, Chen J, Sun G (2011) Arsenic removal from contaminated soil via biovolatilization by genetically engineered bacteria under laboratory conditions. J Environ Sci 23(9):1544–1550

    Article  CAS  Google Scholar 

  • Liu R, Jiang H, Xu P, Qiao C, Zhou Q, Yang C (2014) Engineering chlorpyrifos-degrading Stenotrophomonas sp. YC-1 for heavy metal accumulation and enhanced chlorpyrifos degradation. Biodegradation 25:903–910

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Yang R, Pan Y, Ma M, Pan J, Zhao Y, Cheng Q, Wu M, Wang M, Zhang L (2015) Nitric oxide contributes to minerals absorption, proton pumps and hormone equilibrium under cadmium excess in Trifolium repens L. plants. Ecotoxicol Environ Saf 119:35–46

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Bilal M, Duan X, Iqbal HM (2019) Mitigation of environmental pollution by genetically engineered bacteria—current challenges and future perspectives. Sci Total Environ 667:444–454

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Zha F, Xu L, Kang B, Yang C, Feng Q, Zhang W, Zhang J (2020) Strength and microstructure characteristics of cement-soda residue solidified/stabilized zinc contaminated soil subjected to freezing–thawing cycles. Cold Reg Sci Technol 172:102992

    Article  Google Scholar 

  • Liu G, Geng W, Wu Y, Zhang Y, Chen H, Li M, Cao Y (2024) Biosorption of lead ion by lactic acid bacteria and the application in wastewater. Arch Microbiol 206(1):18

    Article  CAS  Google Scholar 

  • Liu J, Zhao L, Liu Q, Li J, Qiao Z, Sun P, Yang Y (2022) A critical review on soil washing during soil remediation for heavy metals and organic pollutants. Int J Environ Sci Technol 1(19):601–6241–24

  • Lopareva-Pohu A, Verdin A, Garçon G, Sahraoui ALH, Pourrut B, Debiane D, Waterlot C, Laruelle F, Bidar G, Douay F, Shirali P (2011) Influence of fly ash aided phytostabilisation of Pb, Cd and Zn highly contaminated soils on Lolium perenne and Trifolium repens metal transfer and physiological stress. Environ Pollut 159(6):1721–1729

    Article  PubMed  CAS  Google Scholar 

  • Lu Z, Zhang Z, Su Y, Liu C, Shi G (2013) Cultivar variation in morphological response of peanut roots to cadmium stress and its relation to cadmium accumulation. Ecotoxicol Environ Saf 91:147–155

    Article  PubMed  CAS  Google Scholar 

  • Madhav S, Mishra R, Kumari A, Srivastav AL, Ahamad A, Singh P, Ahmed S, Mishra PK, Sillanpää M (2024) A review on sources identification of heavy metals in soil and remediation measures by phytoremediation-induced methods. Int J Environ Sci Technol 21(1):1099–1120

    Article  CAS  Google Scholar 

  • Magnin JP, Gondrexon N, Willison JC (2014) Zinc biosorption by the purple non-sulfur bacterium Rhodobacter capsulatus. Can J Microbiol 60(12):829–837

    Article  PubMed  CAS  Google Scholar 

  • Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li R, Zhang Z (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol Environ Saf 126:111–121

    Article  PubMed  CAS  Google Scholar 

  • Mahbub KR, Krishnan K, Andrews S, Venter H, Naidu R, Megharaj M (2017) Bio-augmentation and nutrient amendment decrease concentration of mercury in contaminated soil. Sci Total Environ 576:303–309

    Article  PubMed  CAS  Google Scholar 

  • Mahmood A, Malik RN (2014) Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore. Pakistan Arab J Chem 7(1):91–99

    Article  CAS  Google Scholar 

  • Mai Z, Wang L, Li Q, Sun Y, Zhang S (2021) Biodegradation and metabolic pathway of phenanthrene by a newly isolated bacterium Gordonia sp. SCSIO19801. Biochem Biophys Res Commun 585:42–47

    Article  PubMed  CAS  Google Scholar 

  • Maity A, Natarajan N, Vijay D, Srinivasan R, Pastor M, Malaviya DR (2018) Influence of metal nanoparticles (NPs) on germination and yield of oat (Avena sativa) and berseem (Trifolium alexandrinum). Proc Natl Acad Sci India Sect B Biol Sci 88:595–607

    Article  CAS  Google Scholar 

  • Maji P, Mistri B (2022) Chemical fertilization as potential pathways of heavy metal contents in agricultural soil in Memari II Block, West Bengal. India Pollut Res J 41(3):1008–1015

    Article  CAS  Google Scholar 

  • Majumdar A, Afsal F, Pathak SK, Upadhayay MK, Roychowdhury T, Srivastava S (2022) Molecular aspects of arsenic responsive microbes in soil-plant-aqueous triphasic systems. Global arsenic hazard: Ecotoxicology and remediation. Springer International Publishing, Cham, pp 291–312

    Google Scholar 

  • Makino T, Kamiya T, Takano H, Itou T, Sekiya N, Sasaki K, Maejima Y (2007) Remediation of cadmium-contaminated paddy soils by washing with calcium chloride: Verification of on-site washing. Environ Pollut 147:112–119

    Article  PubMed  CAS  Google Scholar 

  • Mallikarjunaiah S, Pattabhiramaiah M, Metikurki B (2020) Application of nanotechnology in the bioremediation of heavy metals and wastewater management. In: Thangadurai D, Sangeetha J, Prasad R (eds) Nanotechnology for food, agriculture, and environment. Nanotechnology in the life sciences. Springer, Cham

  • Mantovani M, Collina E, Lasagni M, Marazzi F, Mezzanotte V (2023) Production of microalgal-based carbon encapsulated iron nanoparticles (ME-nFe) to remove heavy metals in wastewater. Environ Sci Pollut Res 30(3):6730–6745

    Article  CAS  Google Scholar 

  • Marreiro DD, Cruz KJC, Morais JBS, Beserra JB, Severo JS, De Oliveira ARS (2017) Zinc and oxidative stress: current mechanisms. Antioxidants 6(2):24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marrugo Negrete JL, López Barboza E (2013) Electrokinetic remediation of mercury-contaminated soil, from the mine El Alacran-San Jorge river basin, Cordoba-Colombia. Rev Fac Ing Univ Antioquia 68:136–146

    Google Scholar 

  • Marrugo-Negrete J, Pinedo-Hernández J, Díez S (2017) Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environ Res 154:380–388

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Finley EJ, Aschner M (2014) Recent advances in mercury research. Curr Environ Health Rep 1:163–171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Massah J, Azadegan B (2016) Effect of chemical fertilizers on soil compaction and degradation. Agric Mech Asia Afr Lat Am 47(1):44–50

    Google Scholar 

  • Masto RE, Sheik S, Nehru G, Selvi VA, George J, Ram LC (2015) Assessment of environmental soil quality around Sonepur Bazari mine of Raniganj coalfield. India Solid Earth 6(3):811–821

    Article  Google Scholar 

  • Mattsson K, da Silva VH, Deonarine A, Louie SM, Gondikas A (2021) Monitoring anthropogenic particles in the environment: Recent developments and remaining challenges at the forefront of analytical methods. Curr Opin Colloid Interface Sci 56:101513

    Article  CAS  Google Scholar 

  • McLaughlin MJ, Alston AM, Martin JK (1988) Phosphorus cycling in wheat pasture rotations. II. The role of the microbial biomass in phosphorus cycling. Soil Res 26(2):333–342

    Article  Google Scholar 

  • McLaughlin MJ, Hamon RE, McLaren RG, Speir TW, Rogers SL (2000) Review: a bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Aust J Soil Res 38(6):1037–1086

    Article  CAS  Google Scholar 

  • Megharaj M, Avudainayagam S, Naidu R (2003) Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr Microbiol 47:0051–0054

    Article  CAS  Google Scholar 

  • Mehrotra T, Dev S, Banerjee A, Chatterjee A, Singh R, Aggarwal S (2021) Use of immobilized bacteria for environmental bioremediation: a review. J Environ Chem Eng 9(5):105920

    Article  CAS  Google Scholar 

  • Migahed F, Fawzy G, Elrazak AA (2015) Isolation of heavy metal tolerant fungi from industrial discharge. J Chem Biol 6:18–35

    Google Scholar 

  • Millaleo R, Reyes-Díaz M, Ivanov AG, Mora ML, Alberdi M (2010) Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. J Soil Sci Plant Nutr 10(4):470–481

    Article  Google Scholar 

  • Mishra V (2014) Biosorption of zinc ion: a deep comprehension. Appl Water Sci 4(4):311–332

    Article  CAS  Google Scholar 

  • Mishra A, Malik A (2013) Recent advances in microbial metal bioaccumulation. Crit Rev Environ Sci Technol 43(11):1162–1222

    Article  CAS  Google Scholar 

  • Miszczak E, Stefaniak S, Michczyński A, Steinnes E, Twardowska I (2020) A novel approach to peatlands as archives of total cumulative spatial pollution loads from atmospheric deposition of airborne elements complementary to EMEP data: priority pollutants (Pb, Cd, Hg). Sci Total Environ 705:135776

    Article  PubMed  CAS  Google Scholar 

  • Mitra S, Chakraborty AJ, Tareq AM, Emran TB, Nainu F, Khusro A, Idris AM, Khandaker MU, Osman H, Alhumaydhi FA, Simal-Gandara J (2022) Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J King Saud Univ-Sci 34(3):101865

    Article  Google Scholar 

  • Mohamed AEMA, Mohamed MA (2020) Carbon nanotubes: synthesis, characterization, and applications. In: Carbon nanomaterials for agri-food and environmental Applications. Elsevier, pp 21–32

  • Mohasin M, Habib K, Rao PS (2022) Heavy Metals Pollution In Soil And Their Remediation Techniques: A Review. Int J Environ Clim Chang 12(1):1231–1250

    Article  Google Scholar 

  • Morcillo RJ, Manzanera M (2021) The effects of plant-associated bacterial exopolysaccharides on plant abiotic stress tolerance. Metabolites 11(6):337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mossa AW, Bailey EH, Usman A, Young SD, Crout NM (2020) The impact of long-term biosolids application (>100 years) on soil metal dynamics. Sci Total Environ 720:137441

    Article  PubMed  CAS  Google Scholar 

  • Mu’azu ND, Usman A, Jarrah N, Alagha O (2016) Pulsed electrokinetic removal of chromium, mercury and cadmium from contaminated mixed clay soils. Soil Sediment Contam Int J 25(7):757–775

    Article  CAS  Google Scholar 

  • Muddarisna N, Krisnayanti BD, Utami SR, Handayanto E (2013) Effects of mercury on growth and biochemical constituents of maize seedlings. Plant Sci Feed 3(4):50–55

    Google Scholar 

  • Mukherjee P, Mitra A, Roy M (2019) Halomonas rhizobacteria of Avicennia marina of Indian Sundarbans promote rice growth under saline and heavy metal stresses through exopolysaccharide production. Front Microbiol 10:431934

    Article  Google Scholar 

  • Myhr AI, Traavik T (2002) The precautionary principle: Scientific uncertainty and omitted research in the context of GMO use and release. J Agric Environ Ethics 15:73–86

    Article  Google Scholar 

  • Naciri R, Lahrir M, Benadis C, Chtouki M, Oukarroum A (2021) Interactive effect of potassium and cadmium on growth, root morphology and chlorophyll a fluorescence in tomato plant. Sci Rep 11(1):5384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naderi Beni N, Karimifard S, Gilley J, Messer T, Schmidt A, Bartelt-Hunt S (2023) Higher concentrations of microplastics in runoff from biosolid-amended croplands than manure-amended croplands. Commun Earth Environ 4(1):42

    Article  Google Scholar 

  • Nag R, Auer A, Markey BK, Whyte P, Nolan S, O’Flaherty V, Russell L, Bolton D, Fenton O, Richards K, Cummins E (2019) Anaerobic digestion of agricultural manure and biomass–critical indicators of risk and knowledge gaps. Sci Total Environ 690:460–479

    Article  PubMed  CAS  Google Scholar 

  • Navarro A, Cardellach E, Cañadas I, Rodríguez J (2013) Solar thermal vitrification of mining contaminated soils. Int J Miner Process 119:65–74

    Article  CAS  Google Scholar 

  • Navas-Acien A, Guallar E, Silbergeld EK, Rothenberg SJ (2007) Lead exposure and cardiovascular disease—a systematic review. Environ Health Perspect 115(3):472–482

    Article  PubMed  CAS  Google Scholar 

  • Naz T, Khan MD, Ahmed I, Rehman SU, Rha ES, Malook I, Jamil M (2016) Biosorption of heavy metals by Pseudomonas species isolated from sugar industry. Toxicol Ind Health 32(9):1619–1627

    Article  PubMed  CAS  Google Scholar 

  • Nazarian H, Amouzgar D, Sedghianzadeh H (2016) Effects of different concentrations of cadmium on growth and morphological changes in basil (Ocimum basilicum L.). Pak J Bot 48(3):945–952

    CAS  Google Scholar 

  • Nazir R, Khan M, Masab M, Rehman HU, Rauf NU, Shahab S, Ameer N, Sajed M, Ullah M, Rafeeq M, Shaheen Z (2015) Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water collected from Tanda Dam Kohat. J Pharm Sci Res 7(3):89

    CAS  Google Scholar 

  • Ndeddy Aka RJ, Babalola OO (2017) Identification and characterization of Cr-, Cd-, and Ni-tolerant bacteria isolated from mine tailings. Bioremediat J 21(1):1–19

    Article  Google Scholar 

  • Netpae T, Suckley S (2019) Bioleaching of Cu and Pb from printed circuit boards by Rhizopus oligosporus and Aspergillus niger. Environ Exp Biol 17(2):85–89

  • Ng SP, Davis B, Palombo EA, Bhave M (2009) A Tn 5051-like mer-containing transposon identified in a heavy metal tolerant strain Achromobacter sp. AO22. BMC Res Notes 2:1–7

    Article  CAS  Google Scholar 

  • Nguyen TH, Won S, Ha MG, Nguyen DD, Kang HY (2021) Bioleaching for environmental remediation of toxic metals and metalloids: A review on soils, sediments, and mine tailings. Chemosphere 282:131108

    Article  PubMed  CAS  Google Scholar 

  • Ni’am MI, Yuniati R (2021) Effect of lead (Pb) on seed germination of water spinach (Ipomoea aquatica Forsk). Int J Phys Conf Ser 1725(1):012041

  • Nwodo UU, Green E, Okoh AI (2012) Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 13(11):14002–14015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Obire O, Anyanwu EC, Okigbo RN (2008) Saprophytic and crude oil degrading fungi from cow dung and poultry droppings as bioremediating agents. J Agric Technol 4(2):81–89

    Google Scholar 

  • Obrist D, Kirk JL, Zhang L, Sunderland EM, Jiskra M, Selin NE (2018) A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio 47:116–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Odumo BO, Carbonell G, Angeyo HK, Patel JP, Torrijos M, Rodríguez Martín JA (2014) Impact of gold mining associated with mercury contamination in soil, biota sediments and tailings in Kenya. Environ Sci Pollut Res 21:12426–12435

    Article  CAS  Google Scholar 

  • Oladipo OG, Awotoye OO, Olayinka A, Bezuidenhout CC, Maboeta MS (2018) Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites. Braz J Microbiol 49:29–37

    Article  PubMed  CAS  Google Scholar 

  • Olubode TP, Amusat AI, Olawale BR, Adekola FF (2022) Biosorption of heavy metals using bacterial isolates from e-waste soil. Afr J Microbiol Res 16(7):268–272

    Google Scholar 

  • Orozco-Mosqueda MDC, Santoyo G, Glick BR (2023) Recent advances in the bacterial phytohormone modulation of plant growth. Plants 12(3):606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ouyang J, Guo W, Li B, Gu L, Zhang H, Chen X (2013) Proteomic analysis of differential protein expression in Acidithiobacillus ferrooxidans cultivated in high potassium concentration. Microbiol Res 168(7):455–460

    Article  PubMed  CAS  Google Scholar 

  • Oves M, Khan MS, Zaidi A (2013) Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi J Biol Sci 20(2):121–129

    Article  PubMed  CAS  Google Scholar 

  • Özyiğit İİ, Baktibekova D, Hocaoğlu-Özyiğit A, Kurmanbekova G, Chekirov K, Yalçin İE (2021) The effects of cadmium on growth, some anatomical and physiological parameters of wheat (Triticum aestivum L.). Int J Life Sci Biotechnol 4(2):235–253

    Article  Google Scholar 

  • Pacyna EG, Pacyna JM, Sundseth K, Munthe J, Kindbom K, Wilson S, Steenhuisen F, Maxson P (2010) Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmos Environ 44(20):2487–2499

    Article  CAS  Google Scholar 

  • Padhan D, Rout PP, Kundu R, Adhikary S, Padhi PP (2021) Bioremediation of heavy metals and other toxic substances by microorganisms. In: Soil bioremediation: an approach towards sustainable technology. Wiley, pp 285–329

  • Page V, Feller U (2015) Heavy metals in crop plants: transport and redistribution processes on the whole plant level. Agronomy 5(3):447–463

    Article  CAS  Google Scholar 

  • Pandey B, Kinrade SD, Catalan LJ (2012) Effects of carbonation on the leachability and compressive strength of cement-solidified and geopolymer-solidified synthetic metal wastes. J Environ Manag 101:59–67

    Article  CAS  Google Scholar 

  • Pant G, Garlapati D, Agrawal U, Prasuna RG, Mathimani T, Pugazhendhi A (2021) Biological approaches practised using genetically engineered microbes for a sustainable environment: a review. J Hazard Mater 405:124631

    Article  PubMed  CAS  Google Scholar 

  • Park JH, Choppala GK, Bolan NS, Chung JW, Chuasavathi T (2011) Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348:439–451

    Article  CAS  Google Scholar 

  • Patel J, Zhang Q, McKay RML, Vincent R, Xu Z (2010) Genetic engineering of Caulobacter crescentus for removal of cadmium from water. Appl Biochem Biotechnol 160:232–243

    Article  PubMed  CAS  Google Scholar 

  • Pat-Espadas AM, Loredo Portales R, Amabilis-Sosa LE, Gómez G, Vidal G (2018) Review of constructed wetlands for acid mine drainage treatment. Water 10(11):1685

    Article  CAS  Google Scholar 

  • Pathak A, Dastidar MG, Sreekrishnan TR (2009) Bioleaching of heavy metals from sewage sludge: a review. J Environ Manag 90(8):2343–2353

    Article  CAS  Google Scholar 

  • Patriarca M, Barlow N, Cross A, Hill S, Robson A, Taylor A, Tyson J (2022) Atomic spectrometry update: review of advances in the analysis of clinical and biological materials, foods and beverages. J Anal at Spectrom 37(3):410–473

    Article  CAS  Google Scholar 

  • Pazos M, Sanroman MA, Cameselle C (2006) Improvement in electrokinetic remediation of heavy metal spiked kaolin with the polarity exchange technique. Chemosphere 62(5):817–822

  • Pedroza-Garcia JA, Xiang Y, De Veylder L (2022) Cell cycle checkpoint control in response to DNA damage by environmental stresses. Plant J 109(3):490–507

    Article  PubMed  CAS  Google Scholar 

  • Pei SL, Chen TL, Pan SY, Yang YL, Sun ZH, Li YJ (2020) Addressing environmental sustainability of plasma vitrification technology for stabilization of municipal solid waste incineration fly ash. J Hazard Mater 398:122959

    Article  PubMed  CAS  Google Scholar 

  • Peter R, Mojca J, Primož P (2011) Genetically modified organisms (GMOs). Encyclop Environ Health 2(3):199–207

  • Piao H, Bishop PL (2006) Stabilization of mercury-containing wastes using sulfide. Environ Pollut 139(3):498–506

    Article  PubMed  CAS  Google Scholar 

  • Pietri GP, Tontini M, Brogioni B, Oldrini D, Robakiewicz S, Henriques P, Calloni I, Abramova V, Santini L, Malić S, Miklić K (2021) Elucidating the structural and minimal protective epitope of the serogroup X meningococcal capsular polysaccharide. Front Mol Biosci 8:745360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pietro-Souza W, de Campos PF, Mello IS, Stachack FFFF, Terezo AJ, da Cunha CN, White JF, Li H, Soares MA (2020) Mercury resistance and bioremediation mediated by endophytic fungi. Chemosphere 240:124874

    Article  PubMed  CAS  Google Scholar 

  • Popa RG, Bachmann O, Huber C (2021) Explosive or effusive style of volcanic eruption determined by magma storage conditions. Nat Geosci 14(10):781–786

    Article  CAS  Google Scholar 

  • Pratush A, Kumar A, Hu Z (2018) Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: a review. Int Microbiol 21:97–106

    Article  PubMed  CAS  Google Scholar 

  • Priyadarshanee M, Das S (2021) Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: A comprehensive review. J Environ Chem Eng 9(1):104686

    Article  CAS  Google Scholar 

  • Priyadarshini E, Priyadarshini SS, Cousins BG, Pradhan N (2021) Metal-Fungus interaction: Review on cellular processes underlying heavy metal detoxification and synthesis of metal nanoparticles. Chemosphere 274:129976

    Article  PubMed  CAS  Google Scholar 

  • Pushie MJ, Pickering IJ, Korbas M, Hackett MJ, George GN (2014) Elemental and chemically specific X-ray fluorescence imaging of biological systems. Chem Rev 114(17):8499–8541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qaswar M, Yiren L, Jing H, Kaillou L, Mudasir M, Zhenzhen L, Hongqian H, Xianjin L, Jianhua J, Ahmed W, Dongchu L (2020) Soil nutrients and heavy metal availability under long-term combined application of swine manure and synthetic fertilizers in acidic paddy soil. J Soils Sediments 20:2093–2106

    Article  CAS  Google Scholar 

  • Qian C, Wang R, Wu H, Ping J, Wu J (2018) Recent advances in emerging DNA-based methods for genetically modified organisms (GMOs) rapid detection. TrAC Trends Anal Chem 109:19–31

    Article  CAS  Google Scholar 

  • Qin H, Hu T, Zhai Y, Lu N, Aliyeva J (2020) The improved methods of heavy metals removal by biosorbents: A review. Environ Pollut 258:113777

    Article  PubMed  CAS  Google Scholar 

  • Qiu J, Song X, Li S, Zhu B, Chen Y, Zhang L, Li Z (2021) Experimental and modeling studies of competitive Pb(II) and Cd(II) bioaccumulation by Aspergillus niger. Appl Microbiol Biotechnol 105(16–17):6477–6488

    Article  PubMed  CAS  Google Scholar 

  • Quiton KG, Doma B Jr, Futalan CM, Wan MW (2018) Removal of chromium (VI) and zinc (II) from aqueous solution using kaolin-supported bacterial biofilms of Gram-negative E. coli and Gram-positive Staphylococcus epidermidis. Sustain Environ Res 28(5):206–213

    Article  CAS  Google Scholar 

  • Rahman Z (2020) An overview on heavy metal resistant microorganisms for simultaneous treatment of multiple chemical pollutants at co-contaminated sites, and their multipurpose application. J Hazard Mater 396:122682

    Article  PubMed  CAS  Google Scholar 

  • Rahman Z, Singh VP (2020) Bioremediation of toxic heavy metals (THMs) contaminated sites: concepts, applications and challenges. Environ Sci Pollut Res 27(22):27563–27581

    Article  CAS  Google Scholar 

  • Rahman NNNA, Shahadat M, Omar FM, Chew AW, Kadir MOA (2016) Dry Trichoderma biomass: biosorption behavior for the treatment of toxic heavy metal ions. Desalin Water Treat 57(28):13106–13112

    Article  Google Scholar 

  • Rahman Z, Thomas L, Singh VP (2019) Biosorption of heavy metals by a lead (Pb) resistant bacterium, Staphylococcus hominis strain AMB-2. J Basic Microbiol 59(5):477–486

    Article  PubMed  CAS  Google Scholar 

  • Rai R, Agrawal M, Agrawal SB (2016) Impact of heavy metals on physiological processes of plants: with special reference to photosynthetic system. In: Singh A, Prasad S, Singh R (eds) Plant Responses to Xenobiotics. Springer, Singapore, pp 127–140

    Chapter  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149

    Article  PubMed  CAS  Google Scholar 

  • Rajmohan KS, Chandrasekaran R, Varjani S (2020) A review on occurrence of pesticides in environment and current technologies for their remediation and management. Indian J Microbiol 60:125–138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajouriya K, Rohra H, Taneja A (2020) Levels of fine particulate matter bound trace metals in air of glass industrial area. Firozabad Pollution 6(3):555–568

    CAS  Google Scholar 

  • Ramírez AM, Melo PG, Robles JMA, Castro MES, Khamkure S, de León RG (2013) Kinetic and thermodynamic study of arsenic (V) adsorption on P and W aluminum functionalized zeolites and its regeneration. J Water Resour Prot 5(08):58

    Article  Google Scholar 

  • Ramya D, Kiruba NJM, Thatheyus AJ (2021) Biosorption of heavy metals using fungal biosorbents–a review. In: Fungi bio-prospects in sustainable agriculture, environment and nano-technology. Elsevier, pp 331–352

  • Raza A, Zahra N, Hafeez MB, Ahmad M, Iqbal S, Shaukat K, Ahmad G (2020) Nitrogen fixation of legumes: biology and physiology. In: The plant family fabaceae: biology and physiological responses to environmental. Springer, Singapore

  • Ren J, Zhao Z, Ali A, Guan W, Xiao R, Wang JJ, Ma S, Guo D, Zhou B, Li R (2020) Characterization of phosphorus engineered biochar and its impact on immobilization of Cd and Pb from smelting contaminated soils. J Soils Sediments 20:3041–3052

    Article  CAS  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Funct Plant Biol 28(9):897–906

    Article  Google Scholar 

  • Rizvi A, Ahmed B, Zaidi A, Khan MS (2020) Biosorption of heavy metals by dry biomass of metal tolerant bacterial biosorbents: an efficient metal clean-up strategy. Environ Monit Assess 192:1–21

    Article  Google Scholar 

  • Robles I, Lozano MJ, Solís S, Hernández G, Paz MV, Olvera MG, Bustos E (2015) Electrokinetic treatment of mercury-polluted soil facilitated by ethylenediaminetetraacetic acid coupled with a reactor with a permeable reactive barrier of iron to recover mercury (II) from water. Electrochim Acta 181:68–72

    Article  CAS  Google Scholar 

  • Rohde M (2019) The Gram-positive bacterial cell wall. Microbiol Spectr 7(3):10–1128

    Article  PubMed Central  Google Scholar 

  • Rosestolato D, Bagatin R, Ferro S (2015) Electrokinetic remediation of soils polluted by heavy metals (mercury in particular). Chem Eng J 264:16–23

    Article  CAS  Google Scholar 

  • Rout GR, Sahoo S (2015) Role of iron in plant growth and metabolism. Rev Agric Sci 3:1–24

    Article  Google Scholar 

  • Ruiz ON, Daniell H (2009) Genetic engineering to enhance mercury phytoremediation. Curr Opin Biotechnol 20(2):213–219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sadej W, Zolnowski AC, Ciecko Z, Grzybowski L, Szostek R (2019) Evaluation of the impact of soil contamination with mercury and application of soil amendments on the yield and chemical composition of Avena sativa L. JESHA 55(1):82–96

    Google Scholar 

  • Sader JA, Ryan S (2020) Advances in ICP-MS technology and the application of multi-element geochemistry to exploration. Geochem Explor Environ Anal 20(2):167–175

    Article  CAS  Google Scholar 

  • Safari F, Akramian M, Salehi-Arjmand H, Khadivi A (2019) Physiological and molecular mechanisms underlying salicylic acid-mitigated mercury toxicity in lemon balm (Melissa officinalis L.). Ecotoxicol Environ Saf 183:109542

    Article  PubMed  CAS  Google Scholar 

  • Sandeep G, Vijayalatha KR, Anitha T (2019) Heavy metals and its impact in vegetable crops. Int J Chem Stud 7(1):1612–1621

    CAS  Google Scholar 

  • Santhoshkumar P, Sridevi G, Thiyageshwari S, Maheswari M, Gnanachitra M (2023) Long-term impact of inorganic fertilizers and manures on maize yield and soil nutrient status in a calcareous inceptisol in India. Int J Plant Soil Sci 35(18)

  • Saravanan A, Kumar PS, Ramesh B, Srinivasan S (2022) Removal of toxic heavy metals using genetically engineered microbes: molecular tools, risk assessment and management strategies. Chemosphere 298:134341

  • Sarubbo LA, Rocha RB Jr, Luna JM, Rufino RD, Santos VA, Banat IM (2015) Some aspects of heavy metals contamination remediation and role of biosurfactants. Chem Ecol 31(8):707–723

    Article  CAS  Google Scholar 

  • Sasaki Y, Minakawa T, Miyazaki A, Silver S, Kusano T (2005) Functional dissection of a mercuric ion transporter, MerC, from Acidithiobacillus ferrooxidans. Biosci Biotechnol Biochem 69(7):1394–1402

    Article  PubMed  CAS  Google Scholar 

  • Sati M, Verma M, Rai JPN (2014) Biosorption of heavy metals from single and multimetal solutions by free and immobilized cells of Bacillus megaterium. Int J Adv Res 2:923–934

    CAS  Google Scholar 

  • Sayqal A, Ahmed OB (2021) Advances in heavy metal bioremediation: An overview. Appl Bionics Biomech 2021:1609149

    Article  PubMed  PubMed Central  Google Scholar 

  • Scammell MK, Sennett CM, Petropoulos ZE, Kamal J, Kaufman JS (2019) Environmental and occupational exposures in kidney disease. Semin Nephrol 39(3):230–243

    Article  PubMed  CAS  Google Scholar 

  • Schippers A, Hedrich S, Vasters J, Drobe M, Sand W, Willscher S (2013) Biomining: metal recovery from ores with microorganisms. In: Schippers A, Glombitza F, Sand W(eds) Geobiotechnology I. Adv Biochem Eng Biotechnol vol 141. Springer, Berlin

  • Schneider L, Maher WA, Potts J, Taylor AM, Batley GE, Krikowa F, Adamack A, Chariton AA, Gruber B (2018) Trophic transfer of metals in a seagrass food web: bioaccumulation of essential and non-essential metals. Mar Pollut Bull 131:468–480

    Article  PubMed  CAS  Google Scholar 

  • Selim S, AbdElgawad H, Alsharari SS, Atif M, Warrad M, Hagagy N, Madany MM, Abuelsoud W (2021) Soil enrichment with actinomycete mitigates the toxicity of arsenic oxide nanoparticles on wheat and maize growth and metabolism. Physiol Plant 173(3):978–992

    Article  PubMed  CAS  Google Scholar 

  • Shabaan M, Asghar HN, Akhtar MJ, Ali Q, Ejaz M (2021) Role of plant growth promoting rhizobacteria in the alleviation of lead toxicity to Pisum sativum L. Int J Phytoremediation 23(8):837–845

    Article  PubMed  CAS  Google Scholar 

  • Shabbir Z, Sardar A, Shabbir A, Abbas G, Shamshad S, Khalid S, Murtaza G, Dumat C, Shahid M (2020) Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere 259:127436

    Article  PubMed  CAS  Google Scholar 

  • Shah K, Mankad AU, Reddy MN (2017) Lead accumulation and its effects on growth and biochemical parameters in Tagetes erecta L. Int J Life Sci Sci Res 3(4):1142–1147

    Google Scholar 

  • Shahzad B, Tanveer M, Rehman A, Cheema SA, Fahad S, Rehman S, Sharma A (2018) Nickel; whether toxic or essential for plants and environment: a review. Plant Physiol Biochem 132:641–651

    Article  PubMed  CAS  Google Scholar 

  • Shao W, Li M, Teng Z, Qiu B, Huo Y, Zhang K (2019) Effects of Pb(II) and Cr(VI) stress on phosphate-solubilizing bacteria (Bacillus sp. strain MRP-3): oxidative stress and bioaccumulation potential. Int J Environ Res Public Health 16(12):2172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma B, Shukla P (2021) A comparative analysis of heavy metal bioaccumulation and functional gene annotation towards multiple metal resistant potential by Ochrobactrum intermedium BPS-20 and Ochrobactrum ciceri BPS-26. Bioresour Technol 320:124330

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, Tiwari S, Hasan A, Saxena V, Pandey LM (2018) Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils. 3 Biotech 8:1–18

    Article  Google Scholar 

  • Sharma P, Sirohi R, Tong YW, Kim SH, Pandey A (2021) Metal and metal(loid)s removal efficiency using genetically engineered microbes: Applications and challenges. J Hazard Mater 416:125855

    Article  PubMed  CAS  Google Scholar 

  • Sharma Y, Kumari N, Sharma V (2022) Lead accumulation, translocation, distribution and photosynthetic toxicity in Cyamopsis tetragonoloba. Soil Sediment Contam 31(8):1043–1060

    Article  CAS  Google Scholar 

  • Sharma KR, Giri R, Sharma RK (2023) Efficient bioremediation of metal containing industrial wastewater using white rot fungi. Int J Environ Sci Technol 20(1):943–950

    Article  CAS  Google Scholar 

  • Shen Z, Chen X, Jia J, Qu L, Wang W (2007) Comparison of electrokinetic soil remediation methods using one fixed anode and approaching anodes. Environ Pollut 150(2):193–199

    Article  PubMed  CAS  Google Scholar 

  • Shen S, Li Y, Chen M, Huang J, Liu F, Xie S, Kong L, Pan Y (2023) Reduced cadmium toxicity in rapeseed via alteration of root properties and accelerated plant growth by a nitrogen-fixing bacterium. J Hazard Mater 449:131040

    Article  PubMed  CAS  Google Scholar 

  • Sheng GP, Xu J, Luo HW, Li WW, Li WH, Yu HQ, Xie Z, Wei SQ, Hu FC (2013) Thermodynamic analysis on the binding of heavy metals onto extracellular polymeric substances (EPS) of activated sludge. Water Res 47(2):607–614

    Article  PubMed  CAS  Google Scholar 

  • Siddiquee S, Rovina K, Azad SA, Naher L, Suryani S, Chaikaew P (2015) Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: a review. J Microb Biochem Technol 7(6):384–395

    Article  CAS  Google Scholar 

  • Silva RA, Hawboldt K, Zhang Y (2018) Application of resins with functional groups in the separation of metal ions/species–a review. Miner Process Extr Metall Rev 39(6):395–413

    Article  CAS  Google Scholar 

  • Singh S, Kumar V (2020) Mercury detoxification by absorption, mercuric ion reductase, and exopolysaccharides: a comprehensive study. Environ Sci Pollut Res 27(22):27181–27201

    Article  CAS  Google Scholar 

  • Singh JS, Abhilash PC, Singh HB, Singh RP, Singh DP (2011) Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480(1–2):1–9

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Kesavan AK, Landi M, Kaur S, Thakur S, Zheng B, Bhardwaj R, Sharma A (2020) 5-aminolevulinic acid regulates Krebs cycle, antioxidative system and gene expression in Brassica juncea L. to confer tolerance against lead toxicity. J Biotechnol 323:283–292

    Article  PubMed  CAS  Google Scholar 

  • Singh P, Chauhan PK, Upadhyay SK, Singh RK, Dwivedi P, Wang J, Jain D, Jiang M (2022) Mechanistic insights and potential use of siderophores producing microbes in rhizosphere for mitigation of stress in plants grown in degraded land. Front Microbiol 13:898979

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh VB, Madhav S, Pant NC, Shekhar R (eds) (2023) Weathering and Erosion Processes in the Natural Environment. John Wiley & Sons

    Google Scholar 

  • Singha Deb AK, Mohan M, Govalkar S, Dasgupta K, Ali SM (2023) Functionalized carbon nanotubes encapsulated alginate beads for the removal of mercury ions: design, synthesis, density functional theory calculation, and demonstration in a batch and fixed-bed process. ACS Omega 8(35):32204–32220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sivarajan SP, Lindsay J, Cronin SJ, Wilson T (2017) Remediation and recovery techniques for volcanic ash-affected pasture soilsof New Zealand. In: Science and policy: nutrient management challenges for the next generation. In: Currie LD, Hedley MJ (eds) Fertilizer and lime research centre. Massey University, Palmerston North, pp 1–17. http://flrc.massey.ac.nz/publications.html

  • Smily JRMB, Sumithra PA (2017) Optimization of chromium biosorption by fungal adsorbent, Trichoderma sp. BSCR02 and its desorption studies. HAYATI J Biosci 24(2):65–71

    Article  Google Scholar 

  • Smith LA, Means JL, Chen A (1995) Remedial options for metals-contaminated sites. Lewis Publishers, Boca Raton, FL, USA

    Google Scholar 

  • Soares TFSN, dos Santos Dias DCF, Oliveira AMS, Ribeiro DM, dos Santos Dias LA (2020) Exogenous brassinosteroids increase lead stress tolerance in seed germination and seedling growth of Brassica juncea L. Ecotoxicol Environ Saf 193:110296

    Article  PubMed  CAS  Google Scholar 

  • Song Q, Fu H, Shi Q, Shan X, Wang Z, Sun Z, Li T (2022) Overfertilization reduces tomato yield under long-term continuous cropping system via regulation of soil microbial community composition. Front Microbiol 13:952021

    Article  PubMed  PubMed Central  Google Scholar 

  • Sperdouli I (2022) Heavy metal toxicity effects on plants. Toxics 10(12):715

    Article  PubMed  PubMed Central  Google Scholar 

  • Spinosa L, Molinari L (2023) Standardization: A necessary support for the utilization of sludge/biosolids in agriculture. Standards 3(4):385–399

    Article  Google Scholar 

  • Sriprang R, Hayashi M, Ono H, Takagi M, Hirata K, Murooka Y (2003) Enhanced accumulation of Cd2+ by a Mesorhizobium sp. transformed with a gene from Arabidopsis thaliana coding for phytochelatin synthase. Appl Environ Microbiol 69(3):1791–1796

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava S, Sharma S (2023) Insight into exopolysaccharide-mediated stress tolerance in plants: a feasible approach towards the development of next-generation bioformulations. J Soil Sci Plant Nutr 23(1):22–33

    Article  CAS  Google Scholar 

  • Srivastava S, Verma PC, Singh A, Mishra M, Singh N, Sharma N, Singh N (2012) Isolation and characterization of Staphylococcus sp. strain NBRIEAG-8 from arsenic contaminated site of West Bengal. Appl Microbiol Biotechnol 95(5):1275–1291

    Article  PubMed  CAS  Google Scholar 

  • Srivastava N, Mishra G (2022) Nanotechnology for environmental pollution detection and remedies. In: Miniaturized analytical devices. Materials and Technology, pp 279–294

  • Stabile P, Abudurahman A, Carroll MR, Paris E (2023) Bulk Composition Effects on Vitrification of Mixed Fine Construction-Demolition and Inorganic Solid Waste. Minerals 13(11):1378

    Article  CAS  Google Scholar 

  • Streets DG, Horowitz HM, Jacob DJ, Lu Z, Levin L, Ter Schure AF, Sunderland EM (2017) Total mercury released to the environment by human activities. Environ Sci Technol 51(11):5969–5977

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Wang Y, Liu G, Luo Y, Qi W (2023) Online analyzer for monitoring of heavy metals in groundwater using diffusive gradients in thin films and x-ray fluorescence techniques. In: 2023 IEEE 16th international conference on electronic measurement & instruments (ICEMI), IEEE, pp 189–193

  • Suvarapu LN, Baek SO (2017) Determination of heavy metals in the ambient atmosphere: A review. Toxicol Ind Health 33(1):79–96

    Article  PubMed  Google Scholar 

  • Suzuki T, Niinae M, Koga T, Akita T, Ohta M, Choso T (2014) EDDS-enhanced electrokinetic remediation of heavy metal-contaminated clay soils under neutral pH conditions. Colloids Surf a Physicochem Eng Asp 440:145–150

    Article  CAS  Google Scholar 

  • Syed A, Zeyad MT, Shahid M, Elgorban AM, Alkhulaifi MM, Ansari IA (2021) Heavy metals induced modulations in growth, physiology, cellular viability, and biofilm formation of an identified bacterial isolate. ACS Omega 6(38):25076–25088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tamariz-Angeles C, Huamán GD, Palacios-Robles E, Olivera-Gonzales P, Castañeda-Barreto A (2021) Characterization of siderophore-producing microorganisms associated to plants from high-Andean heavy metal polluted soil from Callejón de Huaylas (Ancash, Perú). Microbiol Res 250:126811

    Article  PubMed  CAS  Google Scholar 

  • Tang X, Li Q, Wang Z, Hu Y, Hu Y, Li R (2018) In situ electrokinetic isolation of cadmium from paddy soil through pore water drainage: Effects of voltage gradient and soil moisture. Chem Eng J 337:210–219

    Article  CAS  Google Scholar 

  • Tariq SR, Shafiq M, Chotana GA (2016) Distribution of heavy metals in the soils associated with the commonly used pesticides in cotton fields. Scientifica 2016:7575239

    Article  PubMed  PubMed Central  Google Scholar 

  • Tauriainen S, Karp M, Chang W, Virta M (1998) Luminescent bacterial sensor for cadmium and lead. Biosens Bioelectron 13(9):931–938

    Article  PubMed  CAS  Google Scholar 

  • Tchounwou PB, Patlolla AK, Centeno JA (2003) Invited reviews: carcinogenic and systemic health effects associated with arsenic exposure—a critical review. Toxicol Pathol 31(6):575–588

    PubMed  CAS  Google Scholar 

  • Tian D, Wang W, Su M, Zheng J, Wu Y, Wang S, Li Z, Hu S (2018) Remediation of lead-contaminated water by geological fluorapatite and fungus Penicillium oxalicum. Environ Sci Pollut Res 25:21118–21126

    Article  CAS  Google Scholar 

  • Timofeeva AM, Galyamova MR, Sedykh SE (2022) Bacterial siderophores: Classification, biosynthesis, perspectives of use in agriculture. Plants 11(22):3065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Torimiro N, Daramola OB, Oshibanjo OD, Otuyelu FO, Akinsanola BA, Yusuf OO, Ore OT, Omole RK (2021) Ecorestoration of heavy metals and toxic chemicals in polluted environment using microbe-mediated nanomaterials. Int J Environ Bioremediat Biodegrad 9(1):8–21

    CAS  Google Scholar 

  • Torres-Quiroz C, Dissanayake J, Park J (2021) Oyster shell powder, zeolite and red mud as binders for immobilising toxic metals in fine granular contaminated soils (from Industrial Zones in South Korea). Int J Environ Res Public Health 18(5):2530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trellu C, Mousset E, Pechaud Y, Huguenot D, van Hullebusch ED, Esposito G, Oturan MA (2016) Removal of hydrophobic organic pollutants from soil washing/flushing solutions: a critical review. J Hazard Mater 306:149–174

    Article  PubMed  CAS  Google Scholar 

  • Trifunović V (2021) Vitrification as a method of soil remediation. Zast Mater 62(3):166-179

  • Tsezos M (2009) Metal-microbes interactions: beyond environmentalprotection. In: Donati ER, Viera MR, Tavani EL, Giaveno MA, Lavalle TL, Chiacchiarini PA (eds) Advanced Materials Research. Trans Tech Publications, Switzerland, pp 527–532

    Google Scholar 

  • Tsoi MF, Lo CWH, Cheung TT, Cheung BMY (2021) Blood lead level and risk of hypertension in the United States National Health and Nutrition Examination Survey 1999–2016. Sci Rep 11(1):3010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tyagi M, da Fonseca MMR, de Carvalho CC (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241

    Article  PubMed  CAS  Google Scholar 

  • UNEP (2010b) Final review of scientific information on cadmium. Available at: http://www.unep.org/chemicalsandwaste/Portals/9/Lead_Cadmium/docs/Interim_reviews/UNEP_GC26_INF_11_Add_2_Final_UNEP_Cadmium_review_and_apppendix_Dec_2010.pdf. Accessed 11 Apr 2024

  • Ungureanu N, Vlăduț V, Voicu G (2020) Water scarcity and wastewater reuse in crop irrigation. Sustainability 12(21):9055

    Article  CAS  Google Scholar 

  • ur Rehman Z, Junaid MF, Ijaz N, Khalid U, Ijaz Z (2023) Remediation methods of heavy metal contaminated soils from environmental and geotechnical standpoints. Sci Total Environ 867:161468

    Article  Google Scholar 

  • Urík M, Čerňanský S, Ševc J, Šimonovičová A, Littera P (2007) Biovolatilization of arsenic by different fungal strains. Water Air Soil Pollut 186:337–342

    Article  Google Scholar 

  • USEPA (1992) Vitrification technologies for treatment of Hazardous and radioactive waste handbook. Tech Rep EPA/625/R-92/002, United States Environmental Protection Agency, Office of Research and Development, Washington, DC

  • USEPA (2000) Supplementary guidance for conducting health risk assessment of chemical mixtures. Risk assessment forum technical panel. United States Environmental Protection Agency, Washington, DC

  • USGS (2016) Mineral commodity summaries 2016, U.S. Geological Survey. Available at: http://minerals.usgs.gov/minerals/pubs/mcs/2016/mcs2016.pdf. Accessed 25 Mar 2024

  • Ustiatik R, Nuraini Y, Suharjono S, Jeyakumar P, Anderson CW, Handayanto E (2022) Mercury resistance and plant growth promoting traits of endophytic bacteria isolated from mercury-contaminated soil. Bioremediat J 26(3):208–227

    Article  CAS  Google Scholar 

  • Văcar CL, Covaci E, Chakraborty S, Li B, Weindorf DC, Frențiu T, Pârvu M, Podar D (2021) Heavy metal-resistant filamentous fungi as potential mercury bioremediators. J Fungi 7(5):386

    Article  Google Scholar 

  • Valls M, Atrian S, de Lorenzo V, Fernández LA (2000) Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nat Biotechnol 18(6):661–665

    Article  PubMed  CAS  Google Scholar 

  • Vašinková M, Dlabaja M, Kučová K (2021) Bioaccumulation of toxic metals by fungi of the genus Aspergillus isolated from the contaminated area of Ostramo Lagoons. IOP Conf Ser Earth Environ Sci 900(1):012048

    Article  Google Scholar 

  • Vazquez A, Recalde L, Cabrera A, Groppa MD, Benavides MP (2020) Does nitrogen source influence cadmium toxicity in wheat plants? Biochemical and physiological approaches. Plant Physiol Biochem 151:166–175

    Google Scholar 

  • Vega-Páez JD, Rivas RE, Dussán-Garzón J (2019) High efficiency mercury sorption by dead biomass of Lysinibacillus sphaericus—new insights into the treatment of contaminated water. Materials 12(8):1296

    Article  PubMed  PubMed Central  Google Scholar 

  • Vijay S, Dr C (2014) Ion exchange resins and their applications. J Drug Deliv Ther 4(4):115–123

    CAS  Google Scholar 

  • Waalkes MP, Rehm S (1992) Carcinogenicity of oral cadmium in the male Wistar (WFNCr) rat: Effect of chronic dietary zinc deficiency. Fundam Appl Toxicol 19(4):512–520

    Article  PubMed  CAS  Google Scholar 

  • Waalkes MP, Misra RR, Chang LW (1996) Toxicology of metals. CRC, Boca Raton, FL

    Google Scholar 

  • Wang J, Feng X, Anderson CW, Xing Y, Shang L (2012) Remediation of mercury contaminated sites–a review. J Hazard Mater 221:1–18

    PubMed  Google Scholar 

  • Wang T, Sun H, Mao H, Zhang Y, Wang C, Zhang Z, Wang B, Sun L (2014) The immobilization of heavy metals in soil by bioaugmentation of a UV-mutant Bacillus subtilis 38 assisted by NovoGro biostimulation and changes of soil microbial community. J Hazard Mater 278:483–490

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Hou D, Shen Z, Zhu J, Jia X, Ok YS, Tack FM, Rinklebe J (2020a) Field trials of phytomining and phytoremediation: A critical review of influencing factors and effects of additives. Crit Rev Environ Sci Technol 50(24):2724–2774

    Article  Google Scholar 

  • Wang Z, Wang H, Wang H, Li Q, Li Y (2020b) Effect of soil washing on heavy metal removal and soil quality: A two-sided coin. Ecotoxicol Environ Saf 203:110981

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Zhang J, Xu L, Ma A, Zhuang G, Huo S, Cui Y (2024) Selenium volatilization in plants, microalgae, and microorganisms. Heliyon 10(4):e26023

  • Wei W, Ma R, Sun Z, Zhou A, Bu J, Long X, Liu Y (2018) Effects of mining activities on the release of heavy metals (HMs) in a typical mountain headwater region, the Qinghai-Tibet Plateau in China. Int J Environ Res Public Health 15(9):1987

    Article  PubMed  PubMed Central  Google Scholar 

  • White CC, Filliben JJ, Hunston DL, Pintar AL, Schueneman G, Tan KT (2012) A systematic approach to the study of accelerated weathering of building joint sealants. ASTM International

    Google Scholar 

  • WHO (2010) Preventing disease through healthy environments: exposure to lead: a major public health concern. World Health Organization, Geneva

  • World Health Organization. Regional Office for the Western Pacific (1996) World health organization western pacific regional environmental health centre (EHC) summary of 1996 activities. WHO Western Pacific Regional Environmental Health Centre, Kuala Lumpur. Available at: https://iris.who.int/handle/10665/206815. Accessed 12 May 2024

  • Wu CH, Wood TK, Mulchandani A, Chen W (2006) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72(2):1129–1134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu C, Jiang M, Hsieh L, Cai Y, Shen Y, Wang H, Lin Q, Shen C, Hu B, Lou L (2020) Feasibility of bioleaching of heavy metals from sediment with indigenous bacteria using agricultural sulfur soil conditioners. Sci Total Environ 703:134812

    Article  PubMed  CAS  Google Scholar 

  • Wu C, Li F, Yi S, Ge F (2021) Genetically engineered microbial remediation of soils co-contaminated by heavy metals and polycyclic aromatic hydrocarbons: advances and ecological risk assessment. J Environ Manage 296:113185

    Article  PubMed  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Int Sch Res Notices 2011:402647

    Google Scholar 

  • Wygel CM, Peters SC, McDermott JM, Sahagian DL (2019) Bubbles and dust: Experimental results of dissolution rates of metal salts and Glasses From volcanic ash deposits in terms of surface area, chemistry, and human health impacts. GeoHealth 3(11):338–355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu J, Bravo AG, Lagerkvist A, Bertilsson S, Sjöblom R, Kumpiene J (2015) Sources and remediation techniques for mercury contaminated soil. Environ Int 74:42–53

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Xie Z, Guo J, Men Q (2021) Morphological changes and bioaccumulation in response to cadmium exposure in Morchella spongiola, a fungus with potential for detoxification. Can J Microbiol 67(11):789–798

    Article  PubMed  CAS  Google Scholar 

  • Yaciuk PA, Colombo F, Lecomte KL, De Micco G, Bohé AE (2022) Cadmium sources, mobility, and natural attenuation in contrasting environments (carbonate-rich and carbonate-poor) in the Capillitas polymetallic mineral deposit. NW Argentina Appl Geochem 136:105152

    Article  CAS  Google Scholar 

  • Yang L, Ji J, Harris-Shultz KR, Wang H, Wang H, Abd-Allah EF, Luo Y, Hu X (2016) The dynamic changes of the plasma membrane proteins and the protective roles of nitric oxide in rice subjected to heavy metal cadmium stress. Front Plant Sci 7:190

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang P, Zhou XF, Wang LL, Li QS, Zhou T, Chen YK, Zhao ZY, He BY (2018) Effect of phosphate-solubilizing bacteria on the mobility of insoluble cadmium and metabolic analysis. Int J Environ Res Public Health 15(7):1330

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Xiong J, Tao L, Cao Z, Tang W, Zhang J, Yu X, Fu G, Zhang X, Lu Y (2020) Regulatory mechanisms of nitrogen (N) on cadmium (Cd) uptake and accumulation in plants: a review. Sci Total Environ 708:135186

    Article  PubMed  CAS  Google Scholar 

  • Yazdi MD, Wang Y, Di Q, Requia WJ, Wei Y, Shi L, Sabath MB, Dominici F, Coull B, Evans JS, Koutrakis P (2021) Long-term effect of exposure to lower concentrations of air pollution on mortality among US Medicare participants and vulnerable subgroups: a doubly-robust approach. Lancet Planet Health 5(10):e689–e697

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi S, Li F, Wu C, Wei M, Tian J, Ge F (2022) Synergistic leaching of heavy metal-polycyclic aromatic hydrocarbon in co-contaminated soil by hydroxamate siderophore: role of cation-π and chelation. J Hazard Mater 424:127514

    Article  PubMed  CAS  Google Scholar 

  • Yildiz H, Karatas N (2018) Microbial exopolysaccharides: Resources and bioactive properties. Process Biochem 72:41–46

    Article  CAS  Google Scholar 

  • Yin K, Wang Q, Lv M, Chen L (2019) Microorganism remediation strategies towards heavy metals. Chem Eng J 360:1553–1563

    Article  CAS  Google Scholar 

  • Younas H, Younas F (2022) Wastewater application in agriculture-a review. Water Air Soil Pollut 233(8):329

    Article  CAS  Google Scholar 

  • Younas H, Nazir A, Bareen FE (2022) Application of microbe-impregnated tannery solid waste biochar in soil enhances growth performance of sunflower. Environ Sci Pollut Res 29:1–19

    Article  Google Scholar 

  • Yuan H, Liu Q, Guo Z, Fu J, Sun Y, Gu C, Dhankher OP (2021) Sulfur nanoparticles improved plant growth and reduced mercury toxicity via mitigating the oxidative stress in Brassica napus L. J Clean Prod 318:128589

    Article  CAS  Google Scholar 

  • Zahir F, Rizwi SJ, Haq SK, Khan RH (2005) Low dose mercury toxicity and human health. Environ Toxicol Pharmacol 20(2):351–360

    Article  PubMed  CAS  Google Scholar 

  • Zha F, Wang H, Xu L, Yang C, Kang B, Chu C, Tan X (2020) Initial feasibility study in adsorption capacity and mechanism of soda residue on lead (II)-contaminated soil in solidification/stabilization technology. Environ Earth Sci 79:1–12

    Article  Google Scholar 

  • Zhang W, Chen L, Liu D (2012) Characterization of a marine-isolated mercury-resistant Pseudomonas putida strain SP1 and its potential application in marine mercury reduction. Appl Microbiol Biotechnol 93(3):1305–1314

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Yuan X, Xiong T, Wang H, Jiang L (2020) Bioremediation of co-contaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods. Chem Eng J 398:125657

    Article  CAS  Google Scholar 

  • Zhang Y, Kinoshita Y, Kato T, Takai A, Katsumi T (2023) Attenuation performance of geosynthetic sorption sheets against arsenic subjected to compressive stresses. Geotext Geomembr 51(5):179–190

    Article  Google Scholar 

  • Zhang R, Wilson VL, Hou A, Meng G (2015) Source of lead pollution, its influence on public health and the countermeasures. Int J Health Anim Sci Food Saf 2(1):18–31

  • Zhao XW, Zhou MH, Li QB, Lu YH, He N, Sun DH, Deng X (2005) Simultaneous mercury bioaccumulation and cell propagation by genetically engineered Escherichia coli. Process Biochem 40(5):1611–1616

    Article  CAS  Google Scholar 

  • Zheng XJ, Li Q, Peng H, Zhang JX, Chen WJ, Zhou BC, Chen M (2022) Remediation of heavy metal-contaminated soils with soil washing: a review. Sustainability 14(20):13058

    Article  CAS  Google Scholar 

  • Zhou DM, Deng CF, Cang L (2004) Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents. Chemosphere 56(3):265–273

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Liu HY, Wu LH (2013) Distribution and accumulation characteristics of Hg in rice (Oryza sativa L.) under different concentrations of soil Hg. Chin J Ecol 32(6):1532

    Google Scholar 

  • Zhou H, Liu Z, Li X, Xu J (2021) Remediation of lead (II)-contaminated soil using electrokinetics assisted by permeable reactive barrier with different filling materials. J Hazard Mater 408:124885

    Article  PubMed  CAS  Google Scholar 

  • Zhu N, Zhang B, Yu Q (2020) Genetic engineering-facilitated coassembly of synthetic bacterial cells and magnetic nanoparticles for efficient heavy metal removal. ACS Appl Mater Interfaces 12(20):22948–22957

    Article  PubMed  CAS  Google Scholar 

  • Zulfiqar U, Haider FU, Maqsood MF, Mohy-Ud-Din W, Shabaan M, Ahmad M, Kaleem M, Ishfaq M, Aslam Z, Shahzad B (2023) Recent advances in microbial-assisted remediation of cadmium-contaminated soil. Plants 12(17):3147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajira Younas.

Ethics declarations

Consent to participate and publish

All authors have expressed their consent to participate in the writing and publication of the article.

Competing interests

The authors declare that they have no competing interests.

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Responsible Editor: Juan Barcelo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 215 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Younas, H., Nazir, A. & Bareen, F.e. From sources to solutions: integrated approaches for Cd, Hg, and Pb remediation- a comprehensive review. Plant Soil (2024). https://doi.org/10.1007/s11104-024-06944-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11104-024-06944-9

Keywords

Navigation