Abstract
We propose a BFGS method with Wolfe line searches for unconstrained multiobjective optimization problems. The algorithm is well defined even for general nonconvex problems. Global convergence and R-linear convergence to a Pareto optimal point are established for strongly convex problems. In the local convergence analysis, if the objective functions are locally strongly convex with Lipschitz continuous Hessians, the rate of convergence is Q-superlinear. In this respect, our method exactly mimics the classical BFGS method for single-criterion optimization.
Similar content being viewed by others
Data Availability
Codes supporting the numerical results are freely available in the GitHub repository, https://github.com/lfprudente/bfgsMOP.
References
Ansary, M.A., Panda, G.: A modified quasi-Newton method for vector optimization problem. Optimization 64(11), 2289–2306 (2015)
Bello Cruz, J., Lucambio Pérez, L., Melo, J.: Convergence of the projected gradient method for quasiconvex multiobjective optimization. Nonlinear Anal. 74(16), 5268–5273 (2011)
Bhaskar, V., Gupta, S.K., Ray, A.K.: Applications of multiobjective optimization in chemical engineering. Rev. Chem. Eng. 16(1), 1–54 (2000)
Birgin, E., Martinez, J.: Practical Augmented Lagrangian Methods for Constrained Optimization. SIAM, Philadelphia (2014)
Bonnel, H., Iusem, A.N., Svaiter, B.F.: Proximal methods in vector optimization. SIAM J. Optim. 15(4), 953–970 (2005)
Byrd, R.H., Nocedal, J.: A tool for the analysis of quasi-Newton methods with application to unconstrained minimization. SIAM J. Numer. Anal. 26(3), 727–739 (1989)
Ceng, L.C., Mordukhovich, B.S., Yao, J.C.: Hybrid approximate proximal method with auxiliary variational inequality for vector optimization. J. Optim. Theory Appl. 146(2), 267–303 (2010)
Ceng, L.C., Yao, J.C.: Approximate proximal methods in vector optimization. Eur. J. Oper. Res. 183(1), 1–19 (2007)
Chuong, T.D.: Generalized proximal method for efficient solutions in vector optimization. Numer. Funct. Anal. Optim. 32(8), 843–857 (2011)
Chuong, T.D.: Newton-like methods for efficient solutions in vector optimization. Comput. Optim. Appl. 54(3), 495–516 (2013)
Chuong, T.D., Mordukhovich, B.S., Yao, J.C.: Hybrid approximate proximal algorithms for efficient solutions in vector optimization. J. Nonlinear Convex Anal. 12(2), 257–285 (2011)
Custódio, A.L., Madeira, J.F.A., Vaz, A.I.F., Vicente, L.N.: Direct multisearch for multiobjective optimization. SIAM J. Optim. 21(3), 1109–1140 (2011)
Dai, Y.-H.: Convergence properties of the BFGS algorithm. SIAM J. Optim. 13(3), 693–701 (2002)
Dai, Y.-H.: A perfect example for the BFGS method. Math. Program. 138(1–2), 501–530 (2013)
Das, I., Dennis, J.: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8(3), 631–657 (1998)
Davidon, W.C.: Variable metric methods for minimization, aec. Research and Development Report, No. ANL-5990, Argonne Nat’l Lab., Argonne, Illinois (1959)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization: Theoretical Advances and Applications, pp. 105–145. Springer, London (2005)
Dennis, J.E., Moré, J.J.: A characterization of superlinear convergence and its application to quasi-Newton methods. Math. Comput. 28(126), 549–560 (1974)
Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM, Philadelphia (1996)
Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)
Eichfelder, G.: Adaptive Scalarization Methods in Multiobjective Optimization. Springer, Berlin (2008)
Fazzio, N.S., Schuverdt, M.L.: Convergence analysis of a nonmonotone projected gradient method for multiobjective optimization problems. Optim. Lett. 13(6), 1365–1379 (2019)
Fletcher, R., Powell, M.J.D.: A Rapidly Convergent Descent Method for Minimization. Comput. J. 6(2), 163–168 (1963)
Fliege, J., Graña Drummond, L.M., Svaiter, B.F.: Newton’s method for multiobjective optimization. SIAM J. Optim. 20(2), 602–626 (2009)
Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper. Res. 51(3), 479–494 (2000)
Fukuda, E.H., Graña Drummond, L.M.: On the convergence of the projected gradient method for vector optimization. Optimization 60(8–9), 1009–1021 (2011)
Fukuda, E.H., Graña Drummond, L.M.: Inexact projected gradient method for vector optimization. Comput. Optim. Appl. 54(3), 473–493 (2013)
Gonçalves, M.L.N., Prudente, L.F.: On the extension of the Hager–Zhang conjugate gradient method for vector optimization. Comput. Optim. Appl. 76(3), 889–916 (2020)
Graña Drummond, L.M., Iusem, A.N.: A projected gradient method for vector optimization problems. Comput. Optim. Appl. 28(1), 5–29 (2004)
Graña Drummond, L.M., Raupp, F.M.P., Svaiter, B.F.: A quadratically convergent Newton method for vector optimization. Optimization 63(5), 661–677 (2014)
Graña Drummond, L.M., Svaiter, B.F.: A steepest descent method for vector optimization. J. Comput. Appl. Math. 175(2), 395–414 (2005)
Hillermeier, C.: Generalized homotopy approach to multiobjective optimization. J. Optim. Theory Appl. 110(3), 557–583 (2001)
Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)
Jin, Y., Olhofer, M., Sendhoff, B.: Dynamic weighted aggregation for evolutionary multi-objective optimization: why does it work and how? In: Spector, L.A., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.M. (eds.) Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation, GECCO’01, pp. 1042–1049. Morgan Kaufmann Publishers Inc, San Francisco (2001)
Kim, I., de Weck, O.: Adaptive weighted-sum method for bi-objective optimization: Pareto front generation. Struct. Multidiscip. Optim. 29(2), 149–158 (2005)
Lai, K.K., Mishra, S.K., Ram, B.: On q-quasi-Newton’s method for unconstrained multiobjective optimization problems. Mathematics 8(4), 616 (2020)
Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multiobjective optimization. Evol. Comput. 10(3), 263–282 (2002)
Li, D.-H., Fukushima, M.: On the global convergence of the BFGS method for nonconvex unconstrained optimization problems. SIAM J. Optim. 11(4), 1054–1064 (2001)
Lovison, A.: Singular continuation: generating piecewise linear approximations to Pareto sets via global analysis. SIAM J. Optim. 21(2), 463–490 (2011)
Lucambio Pérez, L.R., Prudente, L.F.: Nonlinear conjugate gradient methods for vector optimization. SIAM J. Optim. 28(3), 2690–2720 (2018)
Lucambio Pérez, L.R., Prudente, L.F.: A Wolfe line search algorithm for vector optimization. ACM Trans. Math. Softw. 45(4), 23 (2019)
Mahdavi-Amiri, N., Salehi Sadaghiani, F.: A superlinearly convergent nonmonotone quasi-Newton method for unconstrained multiobjective optimization. Optim. Method Softw. 35(6), 1223–1247 (2020)
Mascarenhas, W.F.: The BFGS method with exact line searches fails for non-convex objective functions. Math. Program. 99(1), 49–61 (2004)
Miglierina, E., Molho, E., Recchioni, M.: Box-constrained multi-objective optimization: a gradient-like method without a priori scalarization. Eur. J. Oper. Res. 188(3), 662–682 (2008)
Mita, K., Fukuda, E.H., Yamashita, N.: Nonmonotone line searches for unconstrained multiobjective optimization problems. J. Glob. Optim. 75, 63–90 (2019)
Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7(1), 17–41 (1981)
Morovati, V., Basirzadeh, H., Pourkarimi, L.: Quasi-Newton methods for multiobjective optimization problems. 4OR 16(3), 261–294 (2017)
Nocedal, J., Wright, S.: Numerical Optimization. Springer, Berlin (2006)
Povalej, Z.: Quasi-Newton method for multiobjective optimization. J. Comput. Appl. Math. 255, 765–777 (2014)
Powell, M.J.: Some global convergence properties of a variable metric algorithm for minimization without exact line searches. In: Cottle, R.W., Lemke, C.E. (eds.) Nonlinear Programming, SIAM-AMS Proceedings, vol. 9 (1976)
Preuss, M., Naujoks, B., Rudolph, G.: Pareto set and EMOA behavior for simple multimodal multiobjective functions. In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) Parallel Problem Solving from Nature—PPSN IX, pp. 513–522. Springer, Berlin (2006)
Qu, S., Goh, M., Chan, F.T.: Quasi-Newton methods for solving multiobjective optimization. Oper. Res. Lett. 39(5), 397–399 (2011)
Qu, S., Liu, C., Goh, M., Li, Y., Ji, Y.: Nonsmooth multiobjective programming with quasi-Newton methods. Eur. J. Oper. Res. 235(3), 503–510 (2014)
Schütze, O., Laumanns, M., Coello Coello, C.A., Dellnitz, M., Talbi, E.-G.: Convergence of stochastic search algorithms to finite size Pareto set approximations. J. Glob. Optim. 41(4), 559–577 (2008)
Stadler, W., Dauer, J.: Multicriteria optimization in engineering: A tutorial and survey. In: Kamat, M.P. (ed.) Structural Optimization: Status And Promise, chapter 10, pp. 209–249. American Institute of Aeronautics and Astronautics (1992)
Stewart, T., Bandte, O., Braun, H., Chakraborti, N., Ehrgott, M., Göbelt, M., Jin, Y., Nakayama, H., Poles, S., Di Stefano, D.: Real-world applications of multiobjective optimization. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization: Interactive and Evolutionary Approaches, pp. 285–327. Springer, Berlin (2008)
Svaiter, B.F.: The multiobjective steepest descent direction is not Lipschitz continuous, but is Hölder continuous. Oper. Res. Lett. 46(4), 430–433 (2018)
Toint, P.L.: Test problems for partially separable optimization and results for the routine PSPMIN. Tech. Rep., The University of Namur, Department of Mathematics, Belgium (1983)
Wang, J., Hu, Y., Wai Yu, C.K., Li, C., Yang, X.: Extended Newton methods for multiobjective optimization: majorizing function technique and convergence analysis. SIAM J. Optim. 29(3), 2388–2421 (2019)
Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)
Acknowledgements
This work was funded by FAPEG (Grants PPP03/15-201810267001725) and CNPq (Grants 424860/2018-0, 309628/2020-2, 405349/2021-1).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflicts of interest.
Additional information
Communicated by Nobuo Yamashita.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Prudente, L.F., Souza, D.R. A Quasi-Newton Method with Wolfe Line Searches for Multiobjective Optimization. J Optim Theory Appl 194, 1107–1140 (2022). https://doi.org/10.1007/s10957-022-02072-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-022-02072-5