[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Convergence analysis of a nonmonotone projected gradient method for multiobjective optimization problems

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this work we consider an extension of the projected gradient method (PGM) to constrained multiobjective problems. The projected gradient scheme for multiobjective optimization proposed by Graña Drummond and Iusem and analyzed by Fukuda and Graña Drummond is extended to include a nonmonotone line search based on the average of the successive previous functions values instead of the traditional Armijo-like rules. Under standard assumptions, stationarity of the accumulation points is established. Moreover, under standard convexity assumptions, we prove full convergence to weakly Pareto optimal solutions of any sequence produced by the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertsekas, D.P.: Convex Analysis and Optimization. Athena Scientific, Belmont, MA (2003)

    MATH  Google Scholar 

  3. Birgin, E.G., Martínez, J.M., Raydan, M.: Inexact spectral projected gradient methods on convex sets. IMA J. Numer. Anal. 23(4), 539–559 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Birgin, E.G., Martínez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10(4), 1196–12119 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burachik, R., Graña Drummond, L.M., Iusem, A.N., Svaiter, B.F.: Full convergence of the steepest descent method with inexact line searches. Optimization 32(2), 137–146 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dai, Y.H.: On the nonmonotone line search. J. Optim. Theory Appl. 112(2), 315–330 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fukuda, E.H., Graña Drummond, L.M.: On the convergence of the projected gradient method for vector optimization. Optimization 60, 1009–1021 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fukuda, E.H., Graña Drummond, L.M.: Inexact projected gradient method for vector optimization. Comput. Optim. Appl. 54, 473–493 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fukuda, E.H., Graña Drummond, L.M.: A survey on multiobjective descent methods. Pesqui. Oper. 34, 585–620 (2014)

    Article  Google Scholar 

  10. Graña Drummond, L.M., Iusem, A.N.: A projected gradient method for vector optimization problems. Comput. Optim. Appl. 28, 5–29 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for newton’s method. SIAM J. Numer. Anal. 23, 707–716 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grippo, L., Lampariello, F., Lucidi, S.: A class on nonmonotone stabilization methods in unconstrained optimization. Numer. Math. 59(8), 779–806 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hager, W.W., Zhang, H.: Algorithm 851: CG\_DESCENT, a conjugate gradient method with guaranteed descent. Assoc. Comput. Mach. ACM Trans. Math. Softw. 32(1), 113–137 (2006)

    Article  MATH  Google Scholar 

  14. Luc, D.: Theory of Vector Optimization. Springer, Berlin (1989)

    Book  Google Scholar 

  15. Lucidi, S., Rochetich, F., Roma, M.: Curvilinear stabilization techniques for truncated newton methods in large-scale unconstrained optimization. SIAM J. Opt. 8, 916–939 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. McCormick, G.P., Tapia, R.A.: The gradient projection method under mild differentiability conditions. SIAM J. Control Optim. 10, 93–98 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mita, K., Fukuda, E.H., Yamashita, N.: On using nonmonotone line search techniques in steepest descentmethods for multiobjective optimization. In: Proceedings of the 61stAnnual Conference of the Institute of Systems, Control andInformation Engineers (ISCIE), Kyoto (2017)

  18. Panier, E.R., Tits, A.L.: Avoiding the maratos effect by means of a nonmonotone line search. I: general constrained problems. SIAM J. Numer. Anal. 28(4), 1183–1195 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pareto, V.: Manual D’economie Politique. F. Rouge, Lausanne (1896)

    Google Scholar 

  20. Qu, S., Ji, Y., Jiang, J., Zhang, Q.: Nonmonotone gradient methods for vector optimization with a portfolio optimization application. Eur. J. Oper. Res. 263(2), 356–366 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Raydan, M.: On the Barzilai and Borwein choice of steplength for the gradient method. IMA J. Numer. Anal. 13, 321–326 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Raydan, M.: The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem. SIAM J. Optim. 7(1), 26–33 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schwartz, A., Polak, E.: Family of projected descent methods for optimization problems with simple bounds. J. Optim. Theory Appl. 92, 1–31 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Toint, P.L.: An assessment of nonmonotone linesearch techniques for unconstrained optimization. SIAM J. Sci. Comput. 17(3), 725–739 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wan, Z., Feng, D.: Investigation on a nonmonotone cautious BFGS algorithm. Math. Numer. Sin. 33(4), 387–396 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Zhang, H., Hager, W.W.: A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim. 14(4), 1043–1056 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the anonymous referees whose comments helped a lot to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Schuverdt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazzio, N.S., Schuverdt, M.L. Convergence analysis of a nonmonotone projected gradient method for multiobjective optimization problems. Optim Lett 13, 1365–1379 (2019). https://doi.org/10.1007/s11590-018-1353-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-018-1353-8

Keywords

Navigation