Abstract
Recent research on evolutionary multiobjective optimization has mainly focused on Pareto fronts. However, we state that proper behavior of the utilized algorithms in decision/search space is necessary for obtaining good results if multimodal objective functions are concerned. Therefore, it makes sense to observe the development of Pareto sets as well. We do so on a simple, configurable problem, and detect interesting interactions between induced changes to the Pareto set and the ability of three optimization algorithms to keep track of Pareto fronts.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester (2001)
Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer, New York (2002)
Coello, C.A.C.: Evolutionary multi-objective optimization: a historical view of the field. IEEE Computational Intelligence Magazine 1(1), 28–36 (2006)
Neumann, F., Wegener, I.: Minimum spanning trees made easier via multi-objective optimization. In: Beyer, H.G. (ed.) Genetic and evolutionary computation conference (GECCO), pp. 763–769. ACM Press, New York (2005)
Preuss, M., Schönemann, L., Emmerich, M.: Counteracting genetic drift and disruptive recombination in (\(\mu\stackrel{+}{,}\lambda\))-ea on multimodal fitness landscapes. In: Beyer, H.G. (ed.) Genetic and evolutionary computation conference (GECCO), pp. 865–872. ACM Press, New York (2005)
De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems. PhD thesis, University of Michigan (1975)
Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Berlin (2005)
Okabe, T., Jin, Y., Olhofer, M., Sendhoff, B.: On Test Functions for Evolutionary Multi-objective Optimization. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 792–802. Springer, Heidelberg (2004)
Zhou, A., Zhang, Q., Jin, Y., Tsang, E., Okabe, T.: A model-based evolutionary algorithm for bi-objective optimization. In: Congress on Evolutionary Computation (CEC), pp. 2568–2575. IEEE Press, Piscataway (2005)
Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005)
Naujoks, B., Beume, N., Emmerich, M.: Multi-objective optimisation using S-metric selection: Application to three-dimensional solution spaces. In: Congress on Evolutionary Computation (CEC), pp. 1282–1289. IEEE Press, Piscataway (2005)
Beume, N.: Hypervolumen-basierte Selektion in einem evolutionären Algorithmus zur Mehrzieloptimierung. Diploma thesis, University of Dortmund (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Preuss, M., Naujoks, B., Rudolph, G. (2006). Pareto Set and EMOA Behavior for Simple Multimodal Multiobjective Functions. In: Runarsson, T.P., Beyer, HG., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds) Parallel Problem Solving from Nature - PPSN IX. PPSN 2006. Lecture Notes in Computer Science, vol 4193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11844297_52
Download citation
DOI: https://doi.org/10.1007/11844297_52
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38990-3
Online ISBN: 978-3-540-38991-0
eBook Packages: Computer ScienceComputer Science (R0)