Abstract
The geometric measure of entanglement is a widely used entanglement measure for quantum pure states. The key problem of computation of the geometric measure is to calculate the entanglement eigenvalue, which is equivalent to computing the largest unitary eigenvalue of a corresponding complex tensor. In this paper, we propose a Jacobian semidefinite programming relaxation method to calculate the largest unitary eigenvalue of a complex tensor. For this, we first introduce the Jacobian semidefinite programming relaxation method for a polynomial optimization with equality constraint and then convert the problem of computing the largest unitary eigenvalue to a real equality constrained polynomial optimization problem, which can be solved by the Jacobian semidefinite programming relaxation method. Numerical examples are presented to show the availability of this approach.
Similar content being viewed by others
References
Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered completely? Phys. Rev. 47, 696–702 (1935)
Schirödinger, E.: Die gegenwartige situation in der quantenmechanik. Naturwissenschaften 23, 844–849 (1935)
Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)
Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275 (1997)
Harrow, A.W., Nielsen, M.A.: Robustness of quantum gates in the presence of noise. Phys. Rev. A 68, 012308 (2003)
Shimony, A.: Degree of entanglement. Ann. N.Y. Acad. Sci. 755, 675–679 (1995)
Wei, T.C., Goldbart, P.M.: Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A. 68, 042307 (2003)
Ni, G., Qi, L., Bai, M.: Geometric measure of entanglement and U-eigenvalues of tensors. SIAM J. Matrix Anal. Appl. 35, 73–87 (2014)
Hilling, J.J., Sudbery, A.: The geometric measure of multipartite entanglement and the singular values of a hypermatrix. J. Math. Phys. 51, 072102 (2010)
Hayashi, M., Markham, D., Murao, M., Owari, M., Virmani, S.: The geometric measure of entanglement for a symmetric pure state with non-negative amplitudes. J. Math. Phys. 50, 122104 (2009)
Hu, S., Qi, L., Zhang, G.: The geometric measure of entanglement of pure states with nonnegative amplitudes and the spectral theory of nonnegative tensors. Phys. Rev. A 93, 012304 (2016)
Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)
Hillar, C., Lim, L.-H.: Most tensor problems are NP-hard. J. ACM 60(6), 45:1–45:39 (2013)
Qi, L., Wang, F., Wang, Y.: Z-eigenvalue methods for a global polynomial optimization problem. Math. Program. 118, 301–316 (2009)
Kolda, T.G., Mayo, J.R.: Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 32, 1095–1124 (2011)
Hao, C., Cui, C., Dai, Y.: A sequential subspace projection method for extreme Z-eigenvalues of supersymmetric tensors. Numer. Linear Algebra Appl. 22, 283–298 (2015)
Yu, G., Yu, Z., Xu, Y., Song, Y., Zhou, Y.: An adaptive gradient method for computing generalized tensor eigenpairs. Comput. Optim. Appl. 65, 781–797 (2016)
Ni, G., Bai, M.: Spherical optimization with complex variables for computing US-eigenpairs. Comput. Optim. Appl. 65, 799–820 (2016)
Che, M., Cichockib, A., Wei, Y.: Neural networks for computing best rank-one approximations of tensors and its applications. Neurocomputing 317, 547–564 (2017)
Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)
Nie, J.: The hierarchy of local minimums in polynomial optimization. Math. Program. 151(2), 555–583 (2015)
Nie, J.: An exact Jacobian SDP relaxation for polynomial optimization. Math. Program. 137, 225–255 (2013)
Cui, C., Dai, Y., Nie, J.: All real eigenvalues of symmetric tensors. SIAM J. Matrix Anal. Appl. 35, 1582–1601 (2014)
Nie, J., Wang, L.: Semidefinite relaxations for best rank-1 tensor approximations. SIAM J. Matrix Anal. Appl. 35, 1155–1179 (2014)
Hua, B., Ni, G., Zhang, M.: Computing geometric measure of entanglement for symmetric pure states via the Jacobian SDP relaxation technique. J. Oper. Res. Soc. China 5, 111–121 (2017)
Hubener, R., Kleinmann, M., Wei, T.C., Guillen, C.G., Guhne, O.: Geometric measure of entanglement for symmetric states. Phys. Rev. A 80, 032324 (2009)
Zhang, X., Ling, C., Qi, L.: The best rank-1 approximation of a symmetric tensor and related spherical optimization problems. SIAM J. Matrix Anal. Appl. 33, 806–821 (2012)
Acknowledgements
The authors would like to thank the editors and anonymous referees for their valuable suggestions, which helped us to improve this manuscript. The first and the third authors’ work is partially supported by the Research Programme of National University of Defense Technology (No. ZK16-03-45), and the second author’s work is partially supported by the National Science Foundation of China (No. 11471242).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Liqun Qi.
Rights and permissions
About this article
Cite this article
Zhang, M., Zhang, X. & Ni, G. Calculating Entanglement Eigenvalues for Nonsymmetric Quantum Pure States Based on the Jacobian Semidefinite Programming Relaxation Method. J Optim Theory Appl 180, 787–802 (2019). https://doi.org/10.1007/s10957-018-1357-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-018-1357-7
Keywords
- Jacobian semidefinite programming relaxation
- Entanglement eigenvalue
- Unitary eigenvalue
- Polynomial optimization
- Complex tensor