[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Calculating Entanglement Eigenvalues for Nonsymmetric Quantum Pure States Based on the Jacobian Semidefinite Programming Relaxation Method

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The geometric measure of entanglement is a widely used entanglement measure for quantum pure states. The key problem of computation of the geometric measure is to calculate the entanglement eigenvalue, which is equivalent to computing the largest unitary eigenvalue of a corresponding complex tensor. In this paper, we propose a Jacobian semidefinite programming relaxation method to calculate the largest unitary eigenvalue of a complex tensor. For this, we first introduce the Jacobian semidefinite programming relaxation method for a polynomial optimization with equality constraint and then convert the problem of computing the largest unitary eigenvalue to a real equality constrained polynomial optimization problem, which can be solved by the Jacobian semidefinite programming relaxation method. Numerical examples are presented to show the availability of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered completely? Phys. Rev. 47, 696–702 (1935)

    Article  MATH  Google Scholar 

  2. Schirödinger, E.: Die gegenwartige situation in der quantenmechanik. Naturwissenschaften 23, 844–849 (1935)

    Article  Google Scholar 

  3. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  Google Scholar 

  4. Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Harrow, A.W., Nielsen, M.A.: Robustness of quantum gates in the presence of noise. Phys. Rev. A 68, 012308 (2003)

    Article  Google Scholar 

  6. Shimony, A.: Degree of entanglement. Ann. N.Y. Acad. Sci. 755, 675–679 (1995)

    Article  MathSciNet  Google Scholar 

  7. Wei, T.C., Goldbart, P.M.: Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A. 68, 042307 (2003)

    Article  Google Scholar 

  8. Ni, G., Qi, L., Bai, M.: Geometric measure of entanglement and U-eigenvalues of tensors. SIAM J. Matrix Anal. Appl. 35, 73–87 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hilling, J.J., Sudbery, A.: The geometric measure of multipartite entanglement and the singular values of a hypermatrix. J. Math. Phys. 51, 072102 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hayashi, M., Markham, D., Murao, M., Owari, M., Virmani, S.: The geometric measure of entanglement for a symmetric pure state with non-negative amplitudes. J. Math. Phys. 50, 122104 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hu, S., Qi, L., Zhang, G.: The geometric measure of entanglement of pure states with nonnegative amplitudes and the spectral theory of nonnegative tensors. Phys. Rev. A 93, 012304 (2016)

    Article  MathSciNet  Google Scholar 

  12. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hillar, C., Lim, L.-H.: Most tensor problems are NP-hard. J. ACM 60(6), 45:1–45:39 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Qi, L., Wang, F., Wang, Y.: Z-eigenvalue methods for a global polynomial optimization problem. Math. Program. 118, 301–316 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kolda, T.G., Mayo, J.R.: Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 32, 1095–1124 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hao, C., Cui, C., Dai, Y.: A sequential subspace projection method for extreme Z-eigenvalues of supersymmetric tensors. Numer. Linear Algebra Appl. 22, 283–298 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yu, G., Yu, Z., Xu, Y., Song, Y., Zhou, Y.: An adaptive gradient method for computing generalized tensor eigenpairs. Comput. Optim. Appl. 65, 781–797 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ni, G., Bai, M.: Spherical optimization with complex variables for computing US-eigenpairs. Comput. Optim. Appl. 65, 799–820 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Che, M., Cichockib, A., Wei, Y.: Neural networks for computing best rank-one approximations of tensors and its applications. Neurocomputing 317, 547–564 (2017)

    Google Scholar 

  20. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nie, J.: The hierarchy of local minimums in polynomial optimization. Math. Program. 151(2), 555–583 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nie, J.: An exact Jacobian SDP relaxation for polynomial optimization. Math. Program. 137, 225–255 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cui, C., Dai, Y., Nie, J.: All real eigenvalues of symmetric tensors. SIAM J. Matrix Anal. Appl. 35, 1582–1601 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nie, J., Wang, L.: Semidefinite relaxations for best rank-1 tensor approximations. SIAM J. Matrix Anal. Appl. 35, 1155–1179 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hua, B., Ni, G., Zhang, M.: Computing geometric measure of entanglement for symmetric pure states via the Jacobian SDP relaxation technique. J. Oper. Res. Soc. China 5, 111–121 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hubener, R., Kleinmann, M., Wei, T.C., Guillen, C.G., Guhne, O.: Geometric measure of entanglement for symmetric states. Phys. Rev. A 80, 032324 (2009)

    Article  MathSciNet  Google Scholar 

  27. Zhang, X., Ling, C., Qi, L.: The best rank-1 approximation of a symmetric tensor and related spherical optimization problems. SIAM J. Matrix Anal. Appl. 33, 806–821 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editors and anonymous referees for their valuable suggestions, which helped us to improve this manuscript. The first and the third authors’ work is partially supported by the Research Programme of National University of Defense Technology (No. ZK16-03-45), and the second author’s work is partially supported by the National Science Foundation of China (No. 11471242).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guyan Ni.

Additional information

Communicated by Liqun Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Zhang, X. & Ni, G. Calculating Entanglement Eigenvalues for Nonsymmetric Quantum Pure States Based on the Jacobian Semidefinite Programming Relaxation Method. J Optim Theory Appl 180, 787–802 (2019). https://doi.org/10.1007/s10957-018-1357-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1357-7

Keywords

Mathematics Subject Classification

Navigation