[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Spherical optimization with complex variablesfor computing US-eigenpairs

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The aim of this paper is to compute unitary symmetric eigenpairs (US-eigenpairs) of high-order symmetric complex tensors, which is closely related to the best complex rank-one approximation of a symmetric complex tensor and quantum entanglement. It is also an optimization problem of real-valued functions with complex variables. We study the spherical optimization problem with complex variables including the first-order and the second-order Taylor polynomials, optimization conditions and convex functions of real-valued functions with complex variables. We propose an algorithm and show that it is guaranteed to approximate a US-eigenpair of a symmetric complex tensor. Moreover, if the number of US-eigenpair is finite, then the algorithm is convergent to a US-eigenpair. Numerical examples are presented to demonstrate the effectiveness of the proposed method in finding US-eigenpairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cleve, R., Dam, W.Van, Nielsen, M., Tapp, A.: Quantum entanglement and the communication complexity of the inner product function. Theor. Comput. Sci. 486, 11–19 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hamma, A., Santra, S., Zanardi, P.: Quantum entanglement in random physical states. Phys. Rev. Lett. 109, 040502 (2012)

    Article  Google Scholar 

  3. Rossi, M., Bruß, D., Macchiavello, C.: Scale invariance of entanglement dynamics in Grover’s quantum search algorithm. Phys. Rev. A 87, 022331 (2013)

    Article  Google Scholar 

  4. Han, D., Qi, L.: A successive approximation method for quantum separability. Front. Math. China 8, 1275–1293 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hu, S., Qi, L., Zhang, G.: Computing the geometric measure of entanglement of multipartite pure states by means of non-negative tensors. Phys. Rev. A 93, 012304 (2016)

    Article  MathSciNet  Google Scholar 

  6. Ling, C., He, H., Qi, L.: Higher-degree eigenvalue complementarity problems for tensors. Comput. Optim. Appl. 64, 149–176 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yu, G., Song, Y., Xu, Y., Yu, Z.: Spectral projected gradient methods for generalized tensor eigenvalue. Comput. Optim. Appl. 63, 143–168 (2016)

    Article  MathSciNet  Google Scholar 

  8. Kolda, T.G., Mayo, J.R.: Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 32, 1095–1124 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lim, L.H.: Singular values and eigenvalues of tensors: a variational approach. in CAMSAP’05: Proceeding of the IEEE international workshop on computational advances in multi-sensor adaptive processing, pp. 129–132 (2005)

  10. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Qi, L.: Eigenvalues and invariants of tensors. J. Math. Anal. Appl. 325, 1363–1377 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Qi, L., Wang, Y., Wu, E.X.: D-eigenvalues of diffusion kurtosis tensors. J. Comput. Appl. Math. 221, 150–157 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, A.M., Qi, L., Zhang, B.: E-characteristic polynomials of tensors. Commun. Math. Sci. 11, 33–53 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ni, G., Qi, L., Wang, F., Wang, Y.: The degree of the E-characteristic polynomial of an even order tensor. J. Math. Anal. Appl. 329, 1218–1229 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ni, G., Wang, Y.: On the best rank-1 approximation to higher-order symmetric tensors. Math. Comput. Model. 46, 1345–1352 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Qi, L.: The best rank-one approximation ratio of a tensor space. SIAM J. Matrix Anal. Appl. 32, 430–442 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Qi, L.: The minimum hartree value for the quantum entanglement problem, arXiv:1202.2983v1 (2012)

  18. Zhang, X., Ling, C., Qi, L.: The best rank-1 approximation of a symmetric tensor and related spherical optimization problems. SIAM J. Matrix Anal. Appl. 33, 806–821 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Friedland, S.: Best rank one approximation of real symmetric tensors can be chosen symmetric. Front. Math. China 8, 19–40 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Friedland, S., Mehrmann, V., Pajarola, R.: On best rank one approximation of tensors. Linear Algebra appl. 20, 942–955 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nie, J., Wang, L.: Semidefinite relaxations for best rank-1 tensor approximations. SIAM J. Matrix Anal. Appl. 35, 1155–1179 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ishteva, M., Absil, P.A., Van Dooren, P.: Jacobi algorithm for the best low multilinear rank approximation of symmetric tensors. SIAM J. Matrix Anal. Appl. 34, 651–672 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sorber, L., Barel, M.Van, Lathauwer, L.De: Optimization-based algorithms for tensor decompositions: canonical polyadic decomposition, decomposition in rank-(\(L_r, L_r,1\)) terms, and a new generalization. SIAM J. Optim. 23, 695–720 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen, L., Xu, A., Zhu, H.: Computation of the geometric measure of entanglement for pure multiqubit states. Phys. Rev. A 82, 032301 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hübener, R., Kleinmann, M., Wei, T.C., Guillán, C.G., Gonzalez-Guillen, C., Gühne, O.: Geometric measure of entanglement for symmetric states. Phys. Rev. A 80, 032324 (2009)

    Article  MathSciNet  Google Scholar 

  26. Hilling, J.J., Sudbery, A.: The geometric measure of multipartite entanglement and the singular values of a hypermatrix. J. Math. Phys. 51, 072102 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wei, T.C., Goldbart, P.M.: Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A 68, 042307 (2003)

    Article  Google Scholar 

  28. Kofidis, E., Regalia, P.A.: On the best rank-1 approximation of higher-order supersym- metric tensors. SIAM J. Matrix Anal. Appl. 23, 863–884 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schultz, T., Seidel, H.P.: Estimating crossing fibers: a tensor decomposition approach. IEEE Trans. Vis. Comput. Graph. 14, 1635–1642 (2008)

    Article  Google Scholar 

  30. Ni, G., Qi, L., Bai, M.: Geometric measure of entanglement and U-eigenvalues of tensors. SIAM J. Matrix Anal. Appl. 35, 73–87 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hayashi, M., Markham, D., Murao, M., Owari, M., Virmani, S.: The geometric measure of entanglement for a symmetric pure state with non-negative amplitudes. J. Math. Phys. 50, 122104 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hu, S., Qi, L., Zhang, G.: The geometric measure of entanglement of pure states with nonnegative amplitudes and the spectral theory of nonnegative tensors. arXiv:1203.3675v5 (2012)

  33. Lathauwer, L.De, Moor, B.De, Vandewalle, J.: On the best rank-1 and rank- \((R_1, R_2,., R_N)\) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21, 1324–1342 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Bouboulis, P.: Wirtinger’s calculus in general Hilbert spaces. arXiv preprint arXiv:1005.5170 (2010)

  35. Remmert, R.: Theory of Complex Functions. Springer, New York (1991)

    Book  MATH  Google Scholar 

  36. Kreutz-Delgado, K.: The complex gradient operator and the CR-calculus. arXiv:0906.4835 (2009)

  37. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, New York (2009)

    MATH  Google Scholar 

  38. Sorensen, M., Comon, P.: Tensor decompositions with banded matrix factors. Linear Algebra Appl. 438, 919–941 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors like to thank the comments of the anonymous referees, which greatly improved the presentation of this paper. We also give thanks to the associate editor for pointing out two relative references. This work was supported by the National Natural Science Foundation of China (No. 11571098) and Hunan Provincial Natural Science Foundation of China (No. 14JJ2063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guyan Ni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, G., Bai, M. Spherical optimization with complex variablesfor computing US-eigenpairs. Comput Optim Appl 65, 799–820 (2016). https://doi.org/10.1007/s10589-016-9848-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-016-9848-7

Keywords

Mathematics Subject Classification