Abstract
The problem of computing geometric measure of quantum entanglement for symmetric pure states can be regarded as the problem of finding the largest unitary symmetric eigenvalue (US-eigenvalue) for symmetric complex tensors, which can be taken as a multilinear optimization problem in complex number field. In this paper, we convert the problem of computing the geometric measure of entanglement for symmetric pure states to a real polynomial optimization problem. Then we use Jacobian semidefinite relaxation method to solve it. Some numerical examples are presented.
Similar content being viewed by others
References
Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009)
Lathauwer, L.D., Moor, B.D., Vandewalle, J.: On the best rank-1 and rank-(\(r_1, r_2,., r_n\)) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21, 1324–1342 (2000)
Zhang, T., Golub, G.H.: Rank-one approximation to high order tensors. SIAM J. Matrix Anal. Appl. 23, 534–550 (2001)
Kofidis, E., Regalia, P.A.: On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23, 863–884 (2002)
Ni, G., Wang, Y.: On the best rank-1 approximation to higher-order symmetric tensors. Math. Comput. Model. 46, 1345–1352 (2007)
Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)
Lim, L.H.: Singular values and eigenvalues of tensors: a variational approach. In: Proceeding of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, vol. 1, pp. 129–132. IEEE Computer Society Press, Piscataway (2005)
Ni, G., Qi, L., Bai, M.: Geometric measure of entanglement and U-eigenvalues of tensors. SIAM J. Matrix Anal. Appl. 35, 73–87 (2014)
Shimony, A.: Degree of entanglement. Ann. N. Y. Acad. Sci. 755, 675–679 (1995)
Wei, T.C., Goldbart, P.M.: Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A 68, 042307 (2003)
Hubener, R., Kleinmann, M., Wei, T.C., Guillen, C.G., Guhne, O.: Geometric measure of entanglement for symmetric states. Phys. Rev. A 80, 032324 (2009)
Hu, S., Qi, L., Zhang, G.: Computing the geometric measure of entanglement of multipartite pure states by means of non-negative tensors. Phys. Rev. A 93, 012304 (2016)
Ni, G., Bai, M.: Spherical optimization with complex variables for computing US-eigenpairs. Comput. Optim. Appl. (2016). doi:10.1007/s10589-016-9848-7
Qi, L., Wang, F., Wang, Y.: Z-eigenvalue methods for a global polynomial optimization problem. Math. Program. 118, 301–316 (2009)
Hu, S., Huang, Z.H., Qi, L.: Finding the extreme Z-eigenvalues of tensors via a sequential semidefinite programming method. Numer. Linear Algebra Appl. 20, 972–984 (2013)
Kolda, T.G., Mayo, J.R.: Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 32, 1095–1124 (2011)
Cui, C., Dai, Y., Nie, J.: All real eigenvalues of symmetric tensors. SIAM J. Matrix Anal. Appl. 35, 1582–1601 (2014)
Zhang, X., Ling, C., Qi, L.: The best rank-1 approximation of a symmetric tensor and related spherical optimization problems. SIAM J. Matrix Anal. Appl. 33, 806–821 (2012)
Han, L.: An unconstrained optimization approach for finding real eigenvalues of even order symmetric tensors. Numer. Algebra Control Optim. 3, 583–599 (2013)
Nie, J.: An exact Jacobian SDP relaxation for polynomial optimization. Math. Program. 137, 225–255 (2013)
Nie, J.: The hierarchy of local minimums in polynomial optimization. Math. Program. 151(2), 555–583 (2015)
Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)
Henrion, D., Lasserre, J.B., Loefberg, J.: Gloptipoly 3: moments, optimization and semidefinite programming. Optim. Methods Softw. 24, 761–779 (2009)
Sturm, J.F.: Sedumi 1.02: A MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11, 625–653 (1999)
Acknowledgments
The authors thank the two anonymous referees for their very useful comments.
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by the Research Programme of National University of Defense Technology (No. ZK16-03-45).
Rights and permissions
About this article
Cite this article
Hua, B., Ni, GY. & Zhang, MS. Computing Geometric Measure of Entanglement for Symmetric Pure States via the Jacobian SDP Relaxation Technique. J. Oper. Res. Soc. China 5, 111–121 (2017). https://doi.org/10.1007/s40305-016-0135-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40305-016-0135-1
Keywords
- Symmetric tensors
- US-eigenvalues
- Polynomial optimization
- Semidefinite relaxation
- Geometric measure of quantum entanglement