[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Strong Stability Preserving Second Derivative General Linear Methods

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we find sufficient strong stability preserving (SSP) conditions for second derivative general linear methods (SGLMs). Then we construct some optimal SSP SGLMs of order p up to eight and stage order \(1\le q\le p\) with two external stages and \(2\le s\le 10\) internal stages, which have larger effective Courant–Friedrichs–Lewy coefficients than the other existing class of the methods such as two derivative Runge–Kutta methods investigated by Christlieb et al., the class of two-step Runge–Kutta methods introduced by Ketcheson et al., the class of multistep multistage methods studied by Constantinescu and Sandu, and general linear methods investigated by Izzo and Jackiewicz. Some numerical experiments for scalar and systems of equations are provided which demonstrate that the constructed SSP SGLMs achieve the predicted order of convergence and preserve monotonicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Abdi, A.: Construction of high-order quadratically stable second-derivative general linear methods for the numerical integration of stiff ODEs. J. Comput. Appl. Math. 303, 218–228 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdi, A., Behzad, B.: Efficient Nordsieck second derivative general linear methods: construction and implementation. Calcolo 55(28), 1–16 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Abdi, A., Braś, M., Hojjati, G.: On the construction of second derivative diagonally implicit multistage integration methods. Appl. Numer. Math. 76, 1–18 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abdi, A., Hojjati, G.: An extension of general linear methods. Numer. Algorithms 57, 149–167 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Abdi, A., Hojjati, G.: Implementation of Nordsieck second derivative methods for stiff ODEs. Appl. Numer. Math. 94, 241–253 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Abdi, A., Hojjati, G.: Maximal order for second derivative general linear methods with Runge–Kutta stability. Appl. Numer. Math. 61, 1046–1058 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Albrecht, P.: Numerical treatment of O.D.E.s: the theory of A-methods. Numer. Math. 47, 59–87 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Albrecht, P.: A new theoretical approach to Runge–Kutta methods. SIAM J. Numer. Anal. 24, 391–406 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Albrecht, P.: Elements of a general theory of composite integration methods. Appl. Math. Comput. 31, 1–17 (1989)

    MathSciNet  MATH  Google Scholar 

  10. Albrecht, P.: The Runge–Kutta theory in a nutshell. SIAM J. Numer. Anal. 33, 1712–1735 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Albrecht, P.: The common basis of the theories of linear cyclic methods and Runge–Kutta methods. Appl. Numer. Math. 22, 3–21 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Barghi Oskouie, N., Hojjati, G., Abdi, A.: Efficient second derivative methods with extended stability regions for non-stiff IVPs. Comput. Appl. Math. 37, 2001–2016 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bresten, C., Gottlieb, S., Grant, Z., Higgs, D., Ketcheson, D.I., Németh, A.: Explicit strong stability preserving multistep Runge–Kutta methods. Math. Comput. (2016). https://doi.org/10.1090/mcom/3115

  14. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley, Chichester (2016)

    Book  MATH  Google Scholar 

  15. Butcher, J.C., Hojjati, G.: Second derivative methods with RK stability. Numer. Algorithms 40, 415–429 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Burrage, K., Butcher, J.C.: Non-linear stability of a general class of differential equations methods. BIT 20, 185–203 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Califano, G., Izzo, G., Jackiewicz, Z.: Strong stability preserving general linear methods with Runge–Kutta stability. J. Sci. Comput. 76, 943–968 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cheng, J.B., Toro, E.F., Jiang, S., Tang, W.: A sub-cell WENO reconstruction method for spatial derivatives in the ADER scheme. J. Comput. Phys. 251, 53–80 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Christlieb, A.J., Gottlieb, S., Grant, Z.J., Seal, D.C.: Explicit strong stability preserving multistage two-derivative time-stepping schemes. J. Sci. Comput. 68, 914–942 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  21. Constantinescu, E.M., Sandu, A.: Optimal explicit strong-stability-preserving general linear methods. J. Sci. Comput. 32, 3130–3150 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Cardone, A., Jackiewicz, Z., Verner, J.H., Welfert, B.: Order conditions for genearal linear methods. J. Comput. Appl. Math. 290, 44–64 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ezzeddine, A.K., Hojjati, G., Abdi, A.: Sequential second derivative general linear methods for stiff systems. Bull. Iran. Math. Soc. 40, 83–100 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-diminishing property in general Runge–Kutta methods. SIAM J. Numer. Anal. 42, 1073–1093 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ferracina, L., Spijker, M.N.: An extension and analysis of the Shu–Osher representation of Runge–Kutta methods. Math. Comput. 74, 201–219 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-boundedness in general Runge–Kutta procedures. Appl. Numer. Math. 53, 265–279 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ferracina, L., Spijker, M.N.: Strong stability of singly-diagonally-implicit Runge–Kutta methods. Appl. Numer. Math. 58, 1675–1686 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Grant, Z., Gottlieb, S., Seal, D.C.: A strong stability preserving analysis for multistage two-derivative time-stepping schemes based on Taylor series conditions. arXiv:1804.10526

  29. Gottlieb, S.: On high order strong stability preserving Runge–Kutta methods and multistep time discretizations. J. Sci. Comput. 25, 105–127 (2005)

    MathSciNet  MATH  Google Scholar 

  30. Gottlieb, S., Ketcheson, D.I., Shu, Chi-Wang: High order strong stability preserving time discretizations. J. Sci. Comput. 38, 251–289 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gottlieb, S., Ketcheson, D.I., Shu, C.-W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific, Hackensack (2011)

    Book  MATH  Google Scholar 

  32. Gottlieb, S., Ruuth, S.J.: Optimal strong-stability-preserving time stepping schemes with fast downwind spatial discretizations. J. Sci. Comput. 27, 289–303 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Second Revised edn. Springer, Berlin (1996)

    MATH  Google Scholar 

  35. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hesthaven, J., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time Dependent Problems. Cambridge Monographs of Applied and Computational Mathematics. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  37. Higueras, I.: On strong stability preserving time discretization methods. J. Sci. Comput. 21, 193–223 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Higueras, I.: Monotonicity for Runge–Kutta methods: inner product norms. J. Sci. Comput. 24, 97–117 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Higueras, I.: Representations of Runge–Kutta methods and strong stability preserving methods. SIAM J. Numer. Anal. 43, 924–948 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hundsdorfer, W., Ruuth, S.J.: On monotonicity and boundedness properties of linear multistep methods. Math. Comput. 75, 655–672 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hundsdorfer, W., Ruuth, S.J., Spiteri, R.J.: Monotonicity-preserving linear multistep methods. SIAM J. Numer. Anal. 41, 605–623 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. Izzo, G., Jackiewicz, Z.: Strong stability preserving transformed DIMSIMs. J. Comput. Appl. Math. (2018). https://doi.org/10.1016/j.cam.2018.03.018

    MathSciNet  MATH  Google Scholar 

  43. Izzo, G., Jackiewicz, Z.: Strong stability preserving general linear methods. J. Sci. Comput. 65, 271–298 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Izzo, G., Jackiewicz, Z.: Strong stability preserving multistage integration methods. Math. Model. Anal. 20, 552–577 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Jackiewicz, Z.: General Linear Methods for Ordinary Differential Equations. Wiley, Hoboken (2009)

    Book  MATH  Google Scholar 

  46. Jackiewicz, Z., Vermiglio, R.: General linear methods with external stages of different orders. BIT 36, 688–712 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  47. Jackiewicz, Z., Tracogna, S.: A general class of two-step Runge–Kutta methods for ordinary differential equations. SIAM J. Numer. Anal. 32, 1390–1427 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ketcheson, D.I.: Highly efficient strong stability preserving Runge–Kutta methods with low-storage implementations. J. Sci. Comput. 30, 2113–2136 (2008)

    MathSciNet  MATH  Google Scholar 

  49. Ketcheson, D.I., Macdonald, C.B., Gottlieb, S.: Optimal implicit strong stability preserving Runge–Kutta methods. Appl. Numer. Math. 52, 373 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ketcheson, D.I., Gottlieb, S., Macdonald, C.B.: Strong stability preserving two-step Runge–Kutta methods. SIAM J. Numer. Anal. 49, 2618–2639 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Kurganov, A., Tadmor, E.: New high-resolution schemes for nonlinear conservation laws and convection–diffusion equations. J. Comput. Phys. 160, 241–282 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  52. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  53. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  54. Moradi, A., Farzi, J., Abdi, A.: Order conditions for second derivative general linear methods. Submitted

  55. Osher, S., Chakravarthy, S.: High resolution schemes and the entropy condition. SIAM J. Numer. Anal. 21, 955–984 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  56. Qiu, J.X., Shu, C.W.: Finite difference WENO schemes with Lax–Wendroff-type time discretizations. SIAM J. Sci. Comput. 24, 2185–2198 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  57. Ruuth, S.J., Hundsdorfer, W.: High-order linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 209, 226–248 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  58. Seal, D.C., Guclu, Y., Christlieb, A.J.: High-order multiderivative time integrators for hyperbolic conservation laws. J. Sci. Comput. 60, 101–140 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  59. Spijker, M.N.: Stepsize conditions for general monotonicity in numerical initial value problems. SIAM J. Numer. Anal. 45, 1226–1245 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  60. Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40, 469–491 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  61. Shu, C.-W.: Total-variation diminishing time discretizations. J. Sci. Comput. 9, 1073–1084 (1988)

    MathSciNet  MATH  Google Scholar 

  62. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  63. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Quarteroni, A. (ed.) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, pp. 325–432. Springer, Berlin (1998)

    Chapter  Google Scholar 

  64. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995–1011 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  65. Toro, E.F., Titarev, V.A.: Derivative Riemann solvers for systems of conservation laws and ADER methods. J. Comput. Phys. 212, 150–165 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  66. Tsai, A.Y.J., Chan, R.P.K., Wang, S.: Two-derivative Runge–Kutta methods for PDEs using a novel discretization approach. Numer. Algorithms 65, 687–703 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  67. Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091–3120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their comments which have markedly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Farzi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

Coefficients of Three Stage Third Order Methods

For \(K=\frac{1}{\sqrt{2}}\) we obtain an SSP SGLM with SSP coefficient \({\mathscr {C}}=1.401\), \({\mathscr {C}}_\text {eff}=0.467\). The coefficients matrices of the two external stages methods of order \(p=s=3\) and stage order \(q=1\) take the form

with

$$\begin{aligned} \begin{array}{lll} a_{21}=0.367036327407744,&{} a_{31}=0.305289583777252,&{} a_{32}=0.594276924770852,\\ {\overline{a}}_{21}=0.087361998687504 ,&{} {\overline{a}}_{31}=0.072665036743429,&{} {\overline{a}}_{32}=0,\\ b_{11} = 0.378319518763646,&{} b_{12}=0.539413445719846,&{} b_{13}=0,\\ b_{21} = 0.224801836087141,&{} b_{22}=0.437599416854594,&{} b_{23}=0.526106658638147,\\ {\overline{b}}_{11} = 0.065956620927602,&{} {\overline{b}}_{12}= 0,&{} {\overline{b}}_{13}=0.156810544725088,\\ {\overline{b}}_{21} = 0.120798754439142,&{} {\overline{b}}_{22}= 0,&{} {\overline{b}}_{23}=0,\\ u_{11}= 0.883562994058718,&{} u_{12}= 0.116437005941282,&{} u_{21}= 0.756325839981176,\\ u_{22}= 0.243674160018824,&{} u_{31}= 0.629088685903634,&{} u_{32}= 0.370911314096366,\\ v = 0.303820705714043,&{}&{}\end{array} \end{aligned}$$

and

$$\begin{aligned} c= & {} \left[ \begin{array}{c} 0.031528224123813 \\ 0.433017185195598\\ 1 \end{array}\right] ,\quad \alpha _{0}=\left[ \begin{array}{c} 1 \\ 1 \end{array}\right] ,\quad \alpha _{1}=\left[ \begin{array}{c} 0 \\ 0.270774947096390 \end{array}\right] ,\\ \alpha _{2}= & {} \left[ \begin{array}{c} 0 \\ 0.104435936229161 \end{array}\right] ,\quad \alpha _3=\left[ \begin{array}{c} 0 \\ -0.141473113475966 \end{array}\right] . \end{aligned}$$

Coefficients of Four Stage Fourth Order Methods

For \(K=\frac{1}{\sqrt{2}}\) we obtain an SSP SGLM with SSP coefficient \({\mathscr {C}}=1.644\), \({\mathscr {C}}_\text {eff}=0.411\). The coefficients matrices of the two external stages methods of order \(p=s=4\) and stage order \(q=1\) take the form

with

$$\begin{aligned} \begin{array}{lll} a_{21} =0.264016422097677,&{} a_{31}=0.208728827122131,&{} a_{32}=0.280067373408790,\\ a_{41} =0.156642291124758,&{} a_{42}=0.210178898836894,&{} a_{43}=0.292626140134642,\\ {\overline{a}}_{21} = 0.069927142101271,&{}{\overline{a}}_{31}= 0.055054745190716,&{} {\overline{a}}_{32}= 0.060229350201948,\\ {\overline{a}}_{41} = 0.041316293215779,&{}{\overline{a}}_{42}= 0.045199618752556,&{} {\overline{a}}_{43}= 0.049611867625336,\\ b_{11}= 0.149050523837038,&{} b_{12} = 0.203464159352573,&{} b_{13}= 0.239948323340150,\\ b_{14}= 0.081851422369239,&{} b_{21} = 0.148523308458399,&{} b_{22} = 0.199285041091082,\\ b_{23}= 0.277458929910524,&{} b_{24} = 0.576062630073757,&{}{\overline{b}}_{11}= 0.050710732728729,\\ {\overline{b}}_{12}= 0.042125352335649,&{}{\overline{b}}_{13}= 0.006683865350595,&{}{\overline{b}}_{14}= 0,\\ {\overline{b}}_{21}= 0.042847486964744,&{}{\overline{b}}_{22}= 0.042856861132357,&{}{\overline{b}}_{23}= 0.047040417154307,\\ {\overline{b}}_{24}= 0,&{}u_{11} = 0.734518464168064,&{} u_{12} = 0.265481535831936,\\ u_{21} = 0.597488310192903,&{} u_{22} = 0.402511689807097,&{} u_{31} = 0.471457186431044,\\ u_{32} = 0.528542813568956,&{} u_{41} = 0.353808982055841,&{} u_{42} = 0.646191017944159,\\ v = 0.617981032945615,&{}&{} \end{array} \end{aligned}$$

and

$$\begin{aligned} c= & {} \left[ \begin{array}{c} 0.139912879206122\\ 0.476146313762474\\ 0.767346445460013\\ 1 \end{array}\right] ,\quad \alpha _0 = \left[ \begin{array}{c} 1 \\ 1 \end{array}\right] ,\quad \alpha _1=\left[ \begin{array}{c} 0 \\ 0.527015480634761 \end{array}\right] ,\\ \alpha _2= & {} \left[ \begin{array}{c} 0 \\ 0.027140536548443 \end{array}\right] ,\quad \alpha _3=\left[ \begin{array}{c} 0 \\ -0.002762467585087 \end{array}\right] \\ \alpha _4= & {} \left[ \begin{array}{c} 0 \\ -0.001638534898442 \end{array}\right] . \end{aligned}$$

Coefficients of Five Stage Fifth Order Methods

For \(K=\frac{1}{\sqrt{2}}\) we obtain an SSP SGLM with SSP coefficient \({\mathscr {C}}=1.185\), \({\mathscr {C}}_\text {eff}=0.237\). The coefficients matrices of the two external stages methods of order \(p=s=5\) and stage order \(q=2\) take the form

with

$$\begin{aligned} \begin{array}{lll} a_{21}= 0.061516399923018,&{} a_{31}= 0.043600570185111,&{} a_{32}= 0.444527820608227, \\ a_{41}= 0.165875098133232, &{} a_{42}= 0.383629364090464,&{} a_{43}= 0.136281919092130, \\ a_{51}= 0.242661894606699,&{} a_{52}= 0.229098986759035, &{}a_{53}= 0.081385974328652,\\ a_{54}= 0.424475494404930,&{}{\overline{a}}_{21}= 0,&{} {\overline{a}}_{31}= 0.073569636769899,\\ {\overline{a}}_{32}= 0.021058600222758,&{}{\overline{a}}_{41}= 0.041456427578800,&{} {\overline{a}}_{42}= 0.011866503266506,\\ {\overline{a}}_{43}= 0.093912282949104, &{} {\overline{a}}_{51}= 0.075476164472320,&{} {\overline{a}}_{52}= 0.007086537500003, \\ {\overline{a}}_{53}= 0.056083321251691,&{} {\overline{a}}_{54}= 0,&{} b_{11}= 0.187235442217099,\\ b_{12}= 0.322862243971992,&{} b_{13}= 0.248777699245909,&{} b_{14} = 0.220697796096535,\\ b_{15}= 0.002570885968929,&{} b_{21}= 0.188276056945535,&{} b_{22}= 0.322742421729971, \\ b_{23}= 0.252236989947234, &{} b_{24}= 0.239243854132961,&{} b_{25}= 0.012555275639019, \\ {\overline{b}}_{11}= 0.060195951745607,&{} {\overline{b}}_{12}= 0.011759266769746, &{} {\overline{b}}_{13}= 0.052645476899545,\\ {\overline{b}}_{14}= 0.063174241824732,&{} {\overline{b}}_{15}= 0.003372973897714,&{} {\overline{b}}_{21}= 0.059952119791420,\\ {\overline{b}}_{22}= 0.011801850994192,&{} {\overline{b}}_{23}= 0.051926886958876,&{} {\overline{b}}_{24}= 0.054650157061697, \\ {\overline{b}}_{25}= 0.021527446840733, &{} u_{11}=0,&{} u_{12}=1, \\ u_{21}= 0.913453478890676, &{} u_{22}= 0.086546521109324, &{} u_{31}= 0.647422355128817, \\ u_{32}= 0.352577644871183, &{} u_{41}= 0.535921231366958,&{} u_{42}= 0.464078768633042, \\ u_{51}= 0.320045915619410, &{} u_{52}= 0.679954084380590,&{} v=0.542559843744499,\end{array} \end{aligned}$$

and

$$\begin{aligned} c= & {} \left[ \begin{array}{c} 0.032910530894256\\ 0.064364691879777\\ 0.499731908267495\\ 0.701059459968292\\ 1 \end{array}\right] ,\quad \alpha _0 = \left[ \begin{array}{c} 1 \\ 1 \end{array}\right] ,\quad \alpha _1=\left[ \begin{array}{c} 0 \\ 0.032910530894256 \end{array}\right] ,\\ \alpha _2= & {} \left[ \begin{array}{c} 0 \\ 0.000541551521871 \end{array}\right] , \alpha _3=\left[ \begin{array}{c} 0 \\ 0.004799386403454 \end{array}\right] \\ \alpha _4= & {} \left[ \begin{array}{c} 0 \\ -0.000861456597941 \end{array}\right] ,\quad \alpha _5 = \left[ \begin{array}{c} 0 \\ 0.000133191758196 \end{array}\right] . \end{aligned}$$

Coefficients of Six Stage Sixth Order Methods

For \(K=\frac{1}{\sqrt{2}}\) we obtain an SSP SGLM with SSP coefficient \({\mathscr {C}}=2.556\), \({\mathscr {C}}_\text {eff}=0.426\). The coefficients matrices of the two external stages methods of order \(p=s=6\) and stage order \(q=3\) take the form

with

$$\begin{aligned} \begin{array}{lll} a_{21}= 0.195519007044922,&{} a_{31}= 0.182698834641781,&{} a_{32}= 0.224355689307196,\\ a_{41}= 0.200798240963995,&{} a_{42}= 0.202087232337342,&{} a_{43}= 0.214237056626004,\\ a_{51}= 0.180742417657866,&{} a_{52}= 0.206337715995125, &{} a_{53}= 0.311032694918027,\\ a_{54}=0,&{} a_{61}= 0.179400758954363,&{} a_{62}= 0.231484391689903,\\ a_{63}= 0.258646300437170,&{} a_{64}=0,&{} a_{65}= 0.209570365940087,\\ {\overline{a}}_{21}= 0.028978386926393, &{} {\overline{a}}_{31}= 0.027078275413061,&{} {\overline{a}}_{32}= 0.027503486292418,\\ {\overline{a}}_{41}= 0.024390617200713,&{} {\overline{a}}_{42}= 0.024773623711643, &{} {\overline{a}}_{43}= 0.026908793160004,\\ {\overline{a}}_{51}= 0.028375394881790,&{} {\overline{a}}_{52}= 0.025294685242906,&{} {\overline{a}}_{53}= 0.009443683013244,\\ {\overline{a}}_{54}= 0.026792613259658,&{} {\overline{a}}_{61}= 0.027844686173205,&{} {\overline{a}}_{62}= 0.020895996142354,\\ {\overline{a}}_{63}= 0.007469018252919, &{} {\overline{a}}_{64}= 0.021190304375858,&{} {\overline{a}}_{65}= 0.019434763451396,\\ b_{11}= 0.162799979155626,&{} b_{12}= 0.210064073093223, &{} b_{13}= 0.234712565126676,\\ b_{14}= 0,&{} b_{15}= 0.190177853235071,&{} b_{16}= 0.043897073679799,\\ b_{21}= 0.186288536307596,&{}b_{22}= 0.201414279006715,&{} b_{23}= 0.299976348757000,\\ b_{24}= 0, &{} b_{25}= 0.372215734846917,&{} b_{26}= 0.015729879093722,\\ {\overline{b}}_{11}= 0.028681836912939,&{} {\overline{b}}_{12}= 0.018962393226422, &{} {\overline{b}}_{13}= 0.006777875539520,\\ {\overline{b}}_{14}= 0.019229467761441,&{} {\overline{b}}_{15}= 0.017636375137000,&{} {\overline{b}}_{16}= 0.060702028317952,\\ {\overline{b}}_{21}= 0.027537753865251,&{} {\overline{b}}_{22}= 0.024389959300741,&{} {\overline{b}}_{23}= 0.009092524569629,\\ {\overline{b}}_{24}= 0.025796343863547, &{} {\overline{b}}_{25}= 0.000782358307294,&{} {\overline{b}}_{26}= 0,\\ u_{11}= 0.382332042901846,&{} u_{12}= 0.617667957098154, &{} u_{21}= 0.336433540760703, \\ u_{22}= 0.663566459239297, &{} u_{31}= 0.314373608788154,&{} u_{32}= 0.685626391211846, \\ u_{41}= 0.325150848279669, &{} u_{42}= 0.674849151720331,&{}u_{51}= 0.321246382913682,\\ u_{52}= 0.678753617086318, &{} u_{61}= 0.337338926920657,&{} u_{62}= 0.662661073079343,\\ v=0.676780216227852,\end{array} \end{aligned}$$

and

$$\begin{aligned} c= & {} \left[ \begin{array}{c} 0.110370998137150\\ 0.316629026151011\\ 0.533325976674361\\ 0.740872397078304\\ 0.822776236109616\\ 1 \end{array}\right] , \quad \alpha _0 = \left[ \begin{array}{c} 1 \\ 1 \end{array}\right] ,\quad \alpha _1=\left[ \begin{array}{c} 0 \\ 0.093858080521929 \end{array}\right] ,\\ \alpha _2= & {} \left[ \begin{array}{c} 0 \\ -0.008889300639912 \end{array}\right] ,\\ \\ \alpha _3= & {} \left[ \begin{array}{c} 0 \\ 0.001888057837179 \end{array}\right] \quad \alpha _4 = \left[ \begin{array}{c} 0 \\ -0.000344064832613 \end{array}\right] ,\\ \\ \alpha _5= & {} \left[ \begin{array}{c} 0 \\ -0.369325560056622 \end{array}\right] ,\quad \alpha _6 = \left[ \begin{array}{c} 0 \\ 0.199826462570264 \end{array}\right] . \end{aligned}$$

Coefficients of Seven Stage Seventh Order Methods

For \(K=\frac{1}{\sqrt{2}}\) we obtain an SSP SGLM with SSP coefficient \({\mathscr {C}}=2.134\), \({\mathscr {C}}_\text {eff}=0.305\). The coefficients matrices of the two external stages methods of order \(p=s=7\) and stage order \(q=4\) take the form

with

$$\begin{aligned} \begin{array}{lll} a_{21}= 0.121020696167578,&{} a_{31}= 0.281444806288868,&{} a_{32}= 0.037608568428153, \\ a_{41}= 0.200813428997174, &{} a_{42}= 0.232400061029153,&{} a_{43}= 0.062293761908094,\\ a_{51}= 0.216857168039921,&{} a_{52}= 0.062163125667391, &{} a_{53}= 0.287091624201198, \\ a_{54}= 0 ,&{} a_{61}= 0.239675395084010,&{} a_{62}= 0.046284663476529,\\ a_{63}= 0.280968628857240,&{} a_{64}= 0 ,&{} a_{65}= 0.181270548883475,\\ a_{71}= 0.235733878768210, &{} a_{72}= 0.048169668125128,&{} a_{73}= 0.293087501905743,\\ a_{74}= 0 ,&{} a_{75}= 0.220909177318860, &{} a_{76}= 0.167399084919805,\\ {\overline{a}}_{21}= 0.033622871277955,&{} {\overline{a}}_{31}= 0.026467610174312,&{} {\overline{a}}_{32}= 0.031079337949210,\\ {\overline{a}}_{41}= 0.032008230975419,&{} {\overline{a}}_{42}= 0.016102719248223, &{}{\overline{a}}_{43}= 0.042281281346407,\\ {\overline{a}}_{51}= 0.025647568937754,&{} {\overline{a}}_{52}= 0.035890029157894,&{} {\overline{a}}_{53}= 0.007273692588794,\\ {\overline{a}}_{54}= 0.018884429077112,&{} {\overline{a}}_{61}= 0.025961504128808,&{} {\overline{a}}_{62}= 0.036146387300470,\\ {\overline{a}}_{63}= 0.004412734061480, &{} {\overline{a}}_{64}= 0.011456624321538,&{} {\overline{a}}_{65}= 0.024128365116758,\\ {\overline{a}}_{71}= 0.026879006637649,&{} {\overline{a}}_{72}= 0.035311062754025, &{} {\overline{a}}_{73}= 0.004582359260718,\\ {\overline{a}}_{74}= 0.011897016186551, &{} {\overline{a}}_{75}= 0.017401819177701, &{} {\overline{a}}_{76}= 0.039952472018132,\\ b_{11}= 0.233258330804281,&{} b_{12}= 0.050729114746177,&{} b_{13}= 0.299319442929729,\\ b_{14}= 0, &{} b_{15}= 0.199509841349740,&{} b_{16}= 0.150164018941345,\\ b_{17}= 0.030540153122196,&{} b_{21}= 0.230532619342581, &{} b_{22}= 0.065827883118964,\\ b_{23}= 0.268468793805008,&{} b_{24}= 0,&{} b_{25}= 0.149621931436028,\\ b_{26}= 0.386751078492987,&{} b_{27}= 0,&{} {\overline{b}}_{11}= 0.026041050133540,\\ {\overline{b}}_{12}= 0.036370124880282, &{} {\overline{b}}_{13}= 0.004965241452746, &{} {\overline{b}}_{14}= 0.012891079588596,\\ {\overline{b}}_{15}= 0.028193631918574,&{} {\overline{b}}_{16}= 0.018659341701326, &{} {\overline{b}}_{17}= 0.002789442108399,\\ {\overline{b}}_{21}= 0.026679627338015,&{} {\overline{b}}_{22}= 0.034405351273111,&{} {\overline{b}}_{23}= 0.004568460172558,\\ {\overline{b}}_{24}= 0.011860930478858,&{} {\overline{b}}_{25}= 0.033893167589117,&{} {\overline{b}}_{26}= 0,\\ {\overline{b}}_{27}= 0, &{} u_{11}= 1,&{} u_{12}= 0, \end{array} \end{aligned}$$
$$\begin{aligned} \begin{array}{lll} u_{21}= 0.564576649034832, &{} u_{22}= 0.435423350965168, &{} u_{31}= 0.841772743229203,\\ u_{32}= 0.158227256770797, &{} u_{41}= 0.720161981469503,&{} u_{42}= 0.279838018530497, \\ u_{51}= 0.696459064529954, &{} u_{52}= 0.303540935470046,&{} u_{61}= 0.748017724899665,\\ u_{62}= 0.251982275100335, &{} u_{71}= 0.747963865286320,&{} u_{72}= 0.252036134713680,\\ v= 0.264952978155935,\end{array} \end{aligned}$$

and

$$\begin{aligned} c= & {} \left[ \begin{array}{c} 0\\ 0.180970394594390\\ 0.340838325628094\\ 0.534035743302817\\ 0.607903860167200\\ 0.782892509796306\\ 1.0 \end{array}\right] , \quad \alpha _0 = \left[ \begin{array}{c} 1 \\ 1 \end{array}\right] ,\quad \alpha _1=\left[ \begin{array}{c} 0 \\ 0.137681404302102 \end{array}\right] ,\\ \alpha _2= & {} \left[ \begin{array}{c} 0 \\ -0.039611402052506 \end{array}\right] , \alpha _3=\left[ \begin{array}{c} 0 \\ 0.002268608912332 \end{array}\right] \quad \\ \alpha _4= & {} \left[ \begin{array}{c} 0 \\ 0.000102637762511 \end{array}\right] , \quad \alpha _5 = \left[ \begin{array}{c} 0 \\ -0.000016024680216 \end{array}\right] ,\\ \\ \alpha _6= & {} \left[ \begin{array}{c} 0 \\ -0.000000253926561 \end{array}\right] ,\quad \alpha _7 = \left[ \begin{array}{c} 0 \\ -0.000000239969313 \end{array}\right] . \end{aligned}$$

Coefficients of Six Stage Eighth Order Methods

For \(K=\frac{1}{\sqrt{2}}\) we obtain an SSP SGLM with SSP coefficient \({\mathscr {C}}=0.378\), \({\mathscr {C}}_\text {eff}=0.063\). The coefficients matrices of the two external stages methods of order \(p=8\) and stage order \(q=5\) with \(s=6\) take the form

with

$$\begin{aligned} \begin{array}{lll} a_{21}= 0.194941336033860,&{} a_{31}= 0.258869155652665,&{} a_{32}= 0,\\ a_{41}= 0.375879165544731,&{}a_{42}= 0,&{} a_{43}= 0,\\ a_{51}= 0.176133472453509,&{} a_{52}= 0.398391061034415,&{}a_{53}= 0,\\ a_{54}=0,&{} a_{61}= 0.070686734394561,&{} a_{62}= 0.815297398839893,\\ a_{63}= 0,&{} a_{64}=0,&{} a_{65}= 0,\\ {\overline{a}}_{21}= 0.033799601974334, &{} {\overline{a}}_{31}= 0.052105299549334,&{} {\overline{a}}_{32}= 0.005225668603390,\\ {\overline{a}}_{41}= 0.099091721590713,&{} {\overline{a}}_{42}= 0.000031326729575,&{} {\overline{a}}_{43}= 0.021231212047832,\\ {\overline{a}}_{51}= 0.080948456912720,&{} {\overline{a}}_{52}= 0.000000493810882,&{} {\overline{a}}_{53}= 0.000334672776228,\\ {\overline{a}}_{54}= 0.055827373072186,&{} {\overline{a}}_{61}= 0.045434215470162,&{} {\overline{a}}_{62}= 0.095476339616561, \end{array} \end{aligned}$$
$$\begin{aligned} \begin{array}{lll} {\overline{a}}_{63}= 0.000013012202321, &{}{\overline{a}}_{64}= 0.002170589080106,&{} {\overline{a}}_{65}= 0.137699389678188,\\ b_{11}= 0.963639559043213,&{} b_{12}= 0.048191855456677,&{} b_{13}= 0,\\ b_{14}= 0,&{} b_{15}= 0.004365945043872,&{} b_{16}= 0,\\ b_{21}= 0.927829178576764,&{} b_{22}= 0.069185537428087,&{} b_{23}= 0,\\ b_{24}= 0, &{} b_{25}= 0,&{} b_{26}= 0.000727414372750,\\ {\overline{b}}_{11}= 0.090918490440034,&{} {\overline{b}}_{12}= 0.082575044411426, &{} {\overline{b}}_{13}= 0.001654982790583,\\ {\overline{b}}_{14}= 0.276070682292649,&{} {\overline{b}}_{15}= 0,&{} {\overline{b}}_{16}= 0,\\ {\overline{b}}_{21}= 0.051336508261314,&{} {\overline{b}}_{22}= 0.246328650630155,&{} {\overline{b}}_{23}= 0.000015640267445,\\ {\overline{b}}_{24}= 0.002608981392075, &{}{\overline{b}}_{25}= 0.165510436159075,&{} {\overline{b}}_{26}= 0.025121245889126,\\ u_{11}= 0.110314127130126,&{} u_{12}= 0.889685872869874, &{} u_{21}= 0.341312840349621,\\ u_{22}= 0.658687159650379,&{}u_{31}= 0.475349130736242,&{} u_{32}= 0.524650869263758,\\ u_{41}= 0.846907416948989,&{} u_{42}= 0.153092583051011,&{} u_{51}= 0.833172220938727,\\ u_{52}= 0.166827779061273, &{} u_{61}= 0.769967140635720,&{} u_{62}= 0.230032859364280,\\ v=0.877656917610160,\end{array} \end{aligned}$$

and

$$\begin{aligned} c= & {} \left[ \begin{array}{c} 0.101841819231152\\ 0.301046289454566\\ 0.367447779529038\\ 0.491314982741747\\ 0.689706864494928\\ 1 \end{array}\right] , \quad \alpha _0 = \left[ \begin{array}{c} 1 \\ 1 \end{array}\right] ,\quad \alpha _1=\left[ \begin{array}{c} 0.118261175900861 \\ 0.099805946734701 \end{array}\right] ,\\ \alpha _2= & {} \left[ \begin{array}{c} -0.046902346937077\\ 0.011644412764986 \end{array}\right] , \alpha _3=\left[ \begin{array}{c} -0.000139597202405 \\ 0.000215183772645 \end{array}\right] \\ \alpha _4= & {} \left[ \begin{array}{c} 0.000498054309704 \\ -0.000056716877362 \end{array}\right] , \alpha _5 = \left[ \begin{array}{c} 0.000052818879022\\ -0.000006446514645 \end{array}\right] ,\\ \alpha _6= & {} \left[ \begin{array}{c} 0.000008284070774 \\ -0.000001103052897 \end{array}\right] , \alpha _7 = \left[ \begin{array}{c} -0.000015242323561 \\ 0.000002223023071 \end{array}\right] ,\\ \alpha _8= & {} \left[ \begin{array}{c} -0.330455420500514 \\ -0.330461271414987 \end{array}\right] . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, A., Farzi, J. & Abdi, A. Strong Stability Preserving Second Derivative General Linear Methods. J Sci Comput 81, 392–435 (2019). https://doi.org/10.1007/s10915-019-01021-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01021-1

Keywords

Mathematics Subject Classification

Navigation