[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Explicit Strong Stability Preserving Multistage Two-Derivative Time-Stepping Schemes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

An Erratum to this article was published on 23 March 2016

Abstract

High order strong stability preserving (SSP) time discretizations are advantageous for use with spatial discretizations with nonlinear stability properties for the solution of hyperbolic PDEs. The search for high order strong stability time-stepping methods with large allowable strong stability time-step has been an active area of research over the last two decades. Recently, multiderivative time-stepping methods have been implemented with hyperbolic PDEs. In this work we describe sufficient conditions for a two-derivative multistage method to be SSP, and find some optimal SSP multistage two-derivative methods. While explicit SSP Runge–Kutta methods exist only up to fourth order, we show that this order barrier is broken for explicit multi-stage two-derivative methods by designing a three stage fifth order SSP method. These methods are tested on simple scalar PDEs to verify the order of convergence, and demonstrate the need for the SSP condition and the sharpness of the SSP time-step in many cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Balsara, D.S., Shu, C.-W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160, 405–452 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bresten, C., Gottlieb, S., Grant, Z., Higgs, D., Ketcheson, D.I., Németh, A.: Strong stability preserving multistep Runge–Kutta methods. Accept. Publ. Math. Comput

  3. Chan, R.P.K., Tsai, A.Y.J.: On explicit two-derivative Runge–Kutta methods. Numer. Algorithms 53, 171–194 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-diminishing property in general Runge–Kutta methods. SIAM J. Numer. Anal. 42, 1073–1093 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ferracina, L., Spijker, M.N.: An extension and analysis of the Shu–Osher representation of Runge–Kutta methods. Math. Comput. 249, 201–219 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Gekeler, E., Widmann, R.: On the order conditions of Runge–Kutta methods with higher derivatives. Numer. Math. 50, 183–203 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gottlieb, S., Ketcheson, D.I., Shu, C.-W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific Press, Singapore (2011)

    Book  MATH  Google Scholar 

  8. Grant, Z.J.: Explicit SSP multistage two-derivative SSP optimization code. https://github.com/SSPmethods/SSPMultiStageTwoDerivativeMethods (2015)

  9. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high-order accurate essentially nonoscillatory schemes. III. J. Comput. Phys. 71, 231–303 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hesthaven, J., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time Dependent Problems. Cambridge University Press, Cambridge Monographs of Applied and Computational Mathematics, Cambridge (2007)

    Book  MATH  Google Scholar 

  11. Higueras, I.: On strong stability preserving time discretization methods. J. Sci. Comput. 21, 193–223 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Higueras, I.: Representations of Runge–Kutta methods and strong stability preserving methods. SIAM J. Numer. Anal. 43, 924–948 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kastlunger, K., Wanner, G.: On Turan type implicit Runge–Kutta methods. Comput. (Arch. Elektron. Rechnen) 9, 317–325 (1972). doi:10.1007/BF02241605

    MathSciNet  MATH  Google Scholar 

  15. Kastlunger, K.H., Wanner, G.: Runge Kutta processes with multiple nodes. Comput. (Arch. Elektron. Rechnen) 9, 9–24 (1972)

    MathSciNet  MATH  Google Scholar 

  16. Ketcheson, D.I.: Highly efficient strong stability preserving Runge–Kutta methods with low-storage implementations. SIAM J. Sci. Comput. 30, 2113–2136 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ketcheson, D.I., Gottlieb, S., Macdonald, C.B.: Strong stability preserving two-step Runge-Kutta methods. SIAM J. Numer. Anal. 49, 2618–2639 (2012)

  18. Ketcheson, D.I., Macdonald, C.B., Gottlieb, S.: Optimal implicit strong stability preserving Runge–Kutta methods. Appl. Numer. Math. 52, 373 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ketcheson, D.I., Parsani, M., Ahmadia, A.J.: Rk-opt: software for the design of Runge–Kutta methods, version 0.2. https://github.com/ketch/RK-opt

  20. Kraaijevanger, J.F.B.M.: Contractivity of Runge–Kutta methods. BIT 31, 482–528 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lax, P., Wendroff, B.: Systems of conservation laws. Commun. Pure Appl. Math. 13, 217–237 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mitsui, T.: Runge–Kutta type integration formulas including the evaluation of the second derivative. i. Publ. Res. Inst. Math. Sci. 18, 325–364 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nguyen-Ba, T., Nguyen-Thu, H., Giordano, T., Vaillancourt, R.: One-step strong-stability-preserving Hermite–Birkhoff–Taylor methods. Sci. J. Riga Tech. Univ. 45, 95–104 (2010)

    MATH  Google Scholar 

  24. Obreschkoff, N.: Neue Quadraturformeln. Abh. Preuss. Akad. Wiss. Math. Nat. Kl. 4 (1940)

  25. Ono, H., Yoshida, T.: Two-stage explicit Runge–Kutta type methods using derivatives. Jpn. J. Ind. Appl. Math. 21, 361–374 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Qiu, J., Dumbser, M., Shu, C.-W.: The discontinuous Galerkin method with Lax–Wendroff type time discretizations. Comput. Methods Appl. Mech. Eng. 194, 4528–4543 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Qiu, J., Shu, C.-W.: Finite difference WENO schemes with Lax–Wendroff-type time discretizations. SIAM J. Sci. Comput. 24, 2185–2198 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ruuth, S.J., Spiteri, R.J.: Two barriers on strong-stability-preserving time discretization methods. J. Sci. Comput. 17, 211–220 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Seal, D.C., Guclu, Y., Christlieb, A.J.: High-order multiderivative time integrators for hyperbolic conservation laws. J. Sci. Comput. 60, 101–140 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shintani, H.: On one-step methods utilizing the second derivative. Hiroshima Math. J. 1, 349–372 (1971)

    MathSciNet  MATH  Google Scholar 

  31. Shintani, H.: On explicit one-step methods utilizing the second derivative. Hiroshima Math. J. 2, 353–368 (1972)

    MathSciNet  MATH  Google Scholar 

  32. Shu, C.-W.: Total-variation diminishing time discretizations. SIAM J. Sci. Stat. Comp. 9, 1073–1084 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  34. Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40, 469–491 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Stancu, D.D., Stroud, A.H.: Quadrature formulas with simple Gaussian nodes and multiple fixed nodes. Math. Comp. 17, 384–394 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  36. Toro, E., Titarev, V.: Solution of the generalized Riemann problem for advection-reaction equations. Eng. Sci. Proc. R. Soc. Lond. A Math. Phys. 458, 271–281 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tsai, A.Y.J., Chan, R.P.K., Wang, S.: Two-derivative Runge–Kutta methods for PDEs using a novel discretization approach. Numer. Algorithms 65, 687–703 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Turán, P.: On the theory of the mechanical quadrature. Acta Sci. Math. Szeged 12, 30–37 (1950)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by: AFOSR Grants FA9550-12-1-0224, FA9550-12-1-0343, FA9550-12-1-0455, FA9550-15-1-0282, and FA9550-15-1-0235; NSF Grant DMS-1418804; New Mexico Consortium Grant NMC0155-01; and NASA Grant NMX15AP39G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary Grant.

Appendices

Appendix 1: Coefficients of Three Stage Fourth Order Methods

  1. 1.

    For \(K=\frac{1}{2}\) we obtain an SSP coefficient \(\mathcal{{C}}=r =1.1464\). The Butcher array coefficients are given by

    $$\begin{aligned} A= & {} \left[ \begin{array}{lll} 0 &{} \quad 0 \quad &{} \quad 0\\ 0.436148675945340 &{} \quad 0 &{} \quad 0 \\ 0.546571371212865 &{} \quad 0.156647174804152 &{} \quad 0 \end{array} \right] , \; \; \; \; b = \left[ \begin{array}{l} 0.528992280543542 \\ 0.105732787708912 \\ 0.365274931747546 \end{array} \right] \\ \hat{A}= & {} \left[ \begin{array}{lll} 0 &{} \quad 0 &{} \quad 0 \\ 0.095112833764436 &{} \quad 0 &{} \quad 0 \\ 0.071032477596813 &{} \quad 0.107904226252921 &{} \quad 0 \end{array} \right] , \; \; \; \; \hat{b} = \left[ \begin{array}{lll} 0.074866026156687 \\ 0.073410341982927 \\ 0.048740310097159 \end{array} \right] . \end{aligned}$$

    The Shu–Osher arrays are \(R \mathbf{e}= (1,0,0,0)^T\),

    $$\begin{aligned} P= & {} \left[ \begin{array}{l l l l} 0&{} \quad 0&{} \quad 0&{} \quad 0 \\ 0.5000&{} \quad 0&{} \quad 0&{} \quad 0 \\ 0.253176729307242 &{} \quad 0.179580018745470 &{} \quad 0&{} \quad 0\\ 0.181986129712082 &{} \quad 0.000000001889650 &{} \quad 0.418750476492704 &{} \quad 0 \\ \end{array} \right] \\ Q= & {} \left[ \begin{array}{l l l l} 0&{} \quad 0&{} \quad 0&{} \quad 0 \\ 0.5&{} \quad 0&{} \quad 0&{} \quad 0 \\ 0 &{} \quad 0.567243251947287 &{} \quad 0 &{} \quad 0\\ 0.140002406985210 &{} \quad 0.003037359947341&{} \quad 0.256223624973014 &{} \quad 0\ \end{array} \right] \end{aligned}$$
  2. 2.

    For \(K=\sqrt{\frac{1}{2}}\) we obtain an SSP coefficient \(\mathcal{{C}}= r= 1.3927\) Butcher formulation

    $$\begin{aligned} A= & {} \left[ \begin{array}{lll} 0 &{} \quad 0 &{} \quad 0\\ 0.443752012194422 &{} \quad 0 &{} \quad 0 \\ 0.543193299768317 &{} \quad 0.149202742858795 &{} \quad 0 \end{array} \right] , \; \; \; \; b = \left[ \begin{array}{l} 0.515040964378407 \\ 0.178821699719783 \\ 0.306137335901811 \end{array} \right] \\ \hat{A}= & {} \left[ \begin{array}{lll} 0 &{} \quad 0 &{} \quad 0\\ 0.098457924163299 &{} \quad 0 &{} \quad 0 \\ 0.062758211639901 &{} \quad 0.110738910914425 &{} \quad 0 \end{array} \right] , \; \; \; \; \hat{b} = \left[ \begin{array}{l} 0.072864982225864 \\ 0.073840478463180 \\ 0.061973770357455 \end{array} \right] . \end{aligned}$$

    The Shu–Osher arrays are \(R \mathbf{e}= (1,0,0,0)^T\),

    $$\begin{aligned} P= & {} \left[ \begin{array}{l l l l} 0&{} \quad 0&{} \quad 0&{} \quad 0 \\ 0.618033988749895&{} \quad 0&{} \quad 0&{} \quad 0 \\ 0.362588515112176 &{} \quad 0.207801573327953 &{} \quad 0&{} \quad 0\\ 0.144580879241747&{} \quad 0.110491604448675 &{} \quad 0.426371652664792 &{} \quad 0\\ \end{array} \right] \\ Q= & {} \left[ \begin{array}{l l l l} 0&{} \quad 0&{} \quad 0&{} \quad 0 \\ 0.381966011250105&{} \quad 0&{} \quad 0&{} \quad 0 \\ 0 &{} \quad 0.429609911559871 &{} \quad 0 &{} \quad 0\\ 0.078129569197367 &{} \quad 0&{} \quad 0.240426294447419 &{} \quad 0\ \end{array} \right] . \end{aligned}$$
  3. 3.

    For \(K=1\) we obtain an SSP coefficient \(\mathcal{{C}}=r =1.6185\). The Butcher array coefficients are given by

    $$\begin{aligned} A= & {} \left[ \begin{array}{lll} 0 &{} \quad 0 &{} \quad 0 \\ 0.452297224196082 &{} \quad 0 &{} \quad 0 \\ 0.528050722182308&{} \quad 0.159236998008155 &{} \quad 0 \end{array} \right] , \; \; \; \; b = \left[ \begin{array}{l} 0.502519798444212\\ 0.210741084344740 \\ 0.286739117211047 \end{array} \right] \\ \hat{A}= & {} \left[ \begin{array}{lll} 0 &{} \quad 0 &{} \quad 0 \\ 0.102286389507741 &{} \quad 0 &{} \quad 0 \\ 0.055482128781494 &{} \quad 0.108677624192402 &{} \quad 0 \end{array} \right] , \; \; \; \; \hat{b} = \left[ \begin{array}{lll} 0.071256397204544 \\ 0.069475972085130 \\ 0.066877749079721 \end{array} \right] . \end{aligned}$$

    The Shu–Osher arrays are \(R \mathbf{e}= (1,0,0,0)^T\),

    $$\begin{aligned} P= & {} \left[ \begin{array}{llll} 0&{} \quad 0&{} \quad 0&{} \quad 0 \\ 0.732050807568877 &{} \quad 0&{} \quad 0&{} \quad 0 \\ 0.457580533944888 &{} \quad 0.257727809835459 &{} \quad 0&{} \quad 0\\ 0.137886171629970 &{} \quad 0.176326540063367 &{} \quad 0.464092174540814 &{} \quad 0\\ \end{array} \right] , \\ Q= & {} \left[ \begin{array}{l l l l} 0&{} \quad 0&{} \quad 0&{} \quad 0 \\ 0.267949192431123 &{} \quad 0&{} \quad 0&{} \quad 0 \\ 0 &{}\quad 0.284691656219654 &{} \quad 0 &{} \quad 0\\ 0.046502314960818 &{} \quad 0&{} \quad 0.175192798805030 &{} \quad 0\ \end{array} \right] . \end{aligned}$$

Appendix 2: Two Stage Third Order Method

This code gives the SSP coefficient and the Butcher and Shu Osher arrays for the optimal explicit SSP two stage third order method given the value K.

figure b

Appendix 3: Three Stage Fifth Order Method

This code gives the SSP coefficient and the Butcher and Shu Osher arrays for the optimal explicit SSP three stage fifth order method given the value K.

figure c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christlieb, A.J., Gottlieb, S., Grant, Z. et al. Explicit Strong Stability Preserving Multistage Two-Derivative Time-Stepping Schemes. J Sci Comput 68, 914–942 (2016). https://doi.org/10.1007/s10915-016-0164-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0164-2

Keywords

Navigation