[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Strong Stability Preserving General Linear Methods with Runge–Kutta Stability

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We investigate strong stability preserving (SSP) general linear methods (GLMs) for systems of ordinary differential equations. Such methods are obtained by the solution of the minimization problems with nonlinear inequality constrains, corresponding to the SSP property of these methods, and equality constrains, corresponding to order and stage order conditions. These minimization problems were solved by the sequential quadratic programming algorithm implemented in MATLAB\(^{\circledR }\) subroutine fmincon.m starting with many random guesses. Examples of transformed SSP GLMs of order \(p = 1, 2, 3\), and 4, and stage order \(q = p\) have been determined, and suitable starting and finishing procedures have been constructed. The numerical experiments performed on a set of test problems have shown that transformed SSP GLMs constructed in this paper are more accurate than transformed SSP DIMSIMs and SSP Runge–Kutta methods of the same order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Butcher, J.C.: Diagonally-implicit multi-stage integration methods. Appl. Numer. Math. 11, 347–363 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Butcher, J.C., Jackiewicz, Z.: Construction of general linear methods with Runge–Kutta stability properties. Numer. Algorithms 36, 53–72 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Butcher, J.C., Wright, W.M.: The construction of practical general linear methods. BIT 43, 695–721 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Califano, G., Izzo, G., Jackiewicz, Z.: Starting procedures for general linear methods. Appl. Numer. Math. 120, 165–175 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Constantinescu, E.M., Sandu, A.: Optimal explicit strong-stability-preserving general linear methods. SIAM J. Sci. Comput. 32, 3130–3150 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ferracina, L., Spijker, M.N.: An extension and analysis of the Shu–Osher representation of Runge–Kutta methods. Math. Comput. 74, 201–219 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-diminishing property in general Runge–Kutta methods. SIAM J. Numer. Anal. 42, 1073–1093 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-boundedness in general Runge–Kutta procedures. Appl. Numer. Math. 53, 265–279 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ferracina, L., Spijker, M.N.: Strong stability of singly-diagonally-implicit Runge–Kutta methods. Appl. Numer. Math. 58, 1675–1686 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gottlieb, S.: On high order strong stability preserving Runge–Kutta methods and multistep time discretizations. J. Sci. Comput. 25, 105–127 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Gottlieb, S., Ketcheson, D.I., Shu, C.-W.: High order strong stability preserving time discretizations. J. Sci. Comput. 38, 251–289 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gottlieb, S., Ketcheson, D.I., Shu, C.-W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific Publishing Co. Pte. Ltd., Hackensack (2011)

    Book  MATH  Google Scholar 

  13. Gottlieb, S., Ruuth, S.J.: Optimal strong-stability-preserving time stepping schemes with fast downwind spatial discretizations. J. Sci. Comput. 27, 289–303 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Higueras, I.: On strong stability preserving time discretization methods. J. Sci. Comput. 21, 193–223 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Higueras, I.: Monotonicity for Runge–Kutta methods: inner product norms. J. Sci. Comput. 24, 97–117 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Higueras, I.: Representations of Runge–Kutta methods and strong stability preserving methods. SIAM J. Numer. Anal. 43, 924–948 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hundsdorfer, W., Ruuth, S.J.: On monotonicity and boundedness properties of linear multistep methods. Math. Comput. 75, 655–672 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hundsdorfer, W., Ruuth, S.J., Spiteri, R.J.: Monotonicity-preserving linear multistep methods. SIAM J. Numer. Anal. 41, 605–623 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hundsdorfer, W., Verwer, J.G.: Numerical Solution of Time-Dependent Advection–Diffusion–Reaction Equations. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  21. Izzo, G., Jackiewicz, Z.: Strong stability preserving general linear methods. J. Sci. Comput. 65, 271–298 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Izzo, G., Jackiewicz, Z.: Strong stability preserving multistage integration methods. Math. Model. Anal. 20, 552–577 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Izzo, G., Jackiewicz, Z.: Strong stability preserving transformed DIMSIMs. J. Comput. Appl. Math. (submitted)

  24. Jackiewicz, Z.: Implementation of DIMSIMs for stiff differential systems. Appl. Numer. Math. 42, 251–267 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jackiewicz, Z.: General Linear Methods for Ordinary Differential Equations. Wiley, Hoboken (2009)

    Book  MATH  Google Scholar 

  26. Jackiewicz, Z., Tracogna, S.: A general class of two-step Runge–Kutta methods for ordinary differential equations. SIAM J. Numer. Anal. 32, 1390–1427 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ketcheson, D.I., Gottlieb, S., Macdonald, C.B.: Strong stability preserving two-step Runge–Kutta methods. SIAM J. Numer. Anal. 49, 2618–2639 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ketcheson, D.I., Macdonald, C.B., Gottlieb, S.: Optimal implicit strong stability preserving Runge–Kutta methods. Appl. Numer. Math. 59, 373–392 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Klinge, M., Weiner, R.: Strong stability preserving explicit peer methods for discontinuous Galerkin discretizations. J. Sci. Comput. https://doi.org/10.1007/s10915-017-0573-x

  30. Lancaster, P., Tismenetsky, M.: The Theory of Matrices. Academic, New York (1985)

    MATH  Google Scholar 

  31. Laney, C.B.: Computational Gasdynamics. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  32. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  33. Ruuth, S.J., Hundsdorfer, W.: High-order linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 209, 226–248 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sanz-Serna, J.M., Verwer, J.G., Hundsdorfer, W.H.: Convergence and order reduction of Runge–Kutta schemes applied to evolutionary problems in partial differential equations. Numer. Math. 50, 405–418 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  35. Shu, C.-W.: High order ENO and WENO schemes for computational fluid dynamics. In: Deconinck, H. (ed.) High-Order Methods for Computational Physics, Lecture Notes in Computational Science and Engineering, pp. 439–582. Springer, Berlin (1999)

    Google Scholar 

  36. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  37. Spijker, M.N.: Stepsize conditions for general monotonicity in numerical initial values problems. SIAM J. Numer. Anal. 45, 1226–1245 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40, 469–491 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wright, W.: The construction of order 4 DIMSIMs for ordinary differential equations. Numer. Algorithms 26, 123–130 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wright, W.: General linear methods with inherent Runge–Kutta stability. Ph.D. Thesis, The University of Auckland, Auckland (2002)

  41. Wright, W.: Explicit general linear methods with inherent Runge–Kutta stability. Numer. Algorithms 31, 381–399 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research reported in this paper was started during the visit of the first author (GC) to Arizona State University in the Spring semester of 2017. This author wish to express her gratitude to the School of Mathematical and Statistical Sciences for hospitality during this visit. We would also like to express our gratitude to anonymous referees whose comments helped us to improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Izzo.

Additional information

Giovanna Califano: The work of this author was supported by an UNISA research Grant. Giuseppe Izzo: The work of this author was partially supported by GNCS-INdAM.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Califano, G., Izzo, G. & Jackiewicz, Z. Strong Stability Preserving General Linear Methods with Runge–Kutta Stability. J Sci Comput 76, 943–968 (2018). https://doi.org/10.1007/s10915-018-0646-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0646-5

Keywords

Navigation