Abstract
Industrialization such as metallurgy, papermaking, chemicals, electroplating and tanning is contributing to the pollution of ecosystems by chromium (Cr). Cr pollution has many sources and high toxicity. Indeed, Cr(VI) is a strong oxidizing agent and, as a consequence, Cr(VI) bioaccumulation may induce acute, subacute or chronic poisoning, mutagenesis, carcinogenesis and teratogenesis. Cr(VI) is usually very mobile and highly soluble in aqueous solutions, but Cr(III) is not. Cr(III) is relatively stable and less toxic than Cr(VI). Thus, some remediation techniques aim to reduce Cr(VI) to Cr(III). Herein, we review bioremediation, photocatalytic remediation, electrochemical remediation and coupled remediation systems. We found that Cr(VI) remediation using coupled systems is relatively easier and more efficient, compared with other treatment systems. This review provides a basis for the development of high-efficiency Cr(VI) removal systems suitable for industrial applications.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Anderson RA (1997) Chromium as an essential nutrient for humans. Regul Toxicol Pharmacol 26(1):S35–S41. https://doi.org/10.1006/rtph.1997.1136
Annamalai K, Nair AM, Chinnaraju S, Kuppusamy S (2014) Removal of Chromium from contaminated effluent and simultaneously Green Nanoparticle synthesis using Bacillus subtilis. Malaya J Biosci 1(1):13–18
Aoudj S, Khelifa A, Drouiche N, Belkada R, Miroud D (2015) Simultaneous removal of chromium(VI) and fluoride by electrocoagulation-electroflotation: application of a hybrid Fe–Al anode. Chem Eng J 267:153–162. https://doi.org/10.1016/j.cej.2014.12.081
Barrera-Diaz CE, Lugo-Lugo V, Bilyeu B (2012) A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J Hazard Mater 223–224:1–12. https://doi.org/10.1016/j.jhazmat.2012.04.054
Cheballah K, Sahmoune A, Messaoudi K, Drouiche N, Lounici H (2015) Simultaneous removal of hexavalent chromium and COD from industrial wastewater by bipolar electrocoagulation. Chem Eng Process: Process Intensif 96:94–99. https://doi.org/10.1016/j.cep.2015.08.007
Chen H, Li X, Xu Z (2011) Cr(VI) remediation by enriched sediment with anthraquinone-2,6-disulfonate as electron shuttles. Phys Chem Earth 36(9–11):451–454. https://doi.org/10.1016/j.pce.2010.05.002
Chen L, Ma L, Bai Q, Zhu X, Zhang J, Wei Q, Li D, Gao C, Li J, Zhang Z, Liu C, He Z, Zeng X, Zhang A, Qu W, Zhuang Z, Chen W, Xiao Y (2014) Heavy metal-induced metallothionein expression is regulated by specific protein phosphatase 2A complexes. J Biol Chem 289(32):22413–22426. https://doi.org/10.1074/jbc.M114.548677
Chen H, Jin R, Liu G, Tian T, Gu C, Zhou J, Xing D (2019) Effects of sludge lysate for Cr(VI) bioreduction and analysis of bioaugmentation mechanism of sludge humic acid. Environ Sci Pollut Res Int 26(5):5065–5075. https://doi.org/10.1007/s11356-018-3917-7
Cheung KH, Gu JD (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeterior Biodegrad 59(1):8–15. https://doi.org/10.1016/j.ibiod.2006.05.002
Chuang SM, Ya V, Feng CL, Lee SJ, Choo KH, Li CW (2018) Electrochemical Cr(VI) reduction using a sacrificial Fe anode: impacts of solution chemistry and stoichiometry. Sep Purif Technol 191:167–172. https://doi.org/10.1016/j.seppur.2017.09.028
Costa M (2003) Potential hazards of hexavalent chromate in our drinking water. Toxicol Appl Pharmacol 188(1):1–5. https://doi.org/10.1016/s0041-008x(03)00011-5
Das S, Mishra J, Das SK, Pandey S, Rao DS, Chakraborty A, Sudarshan M, Das N, Thatoi H (2014) Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil. Chemosphere 96:112–121. https://doi.org/10.1016/j.chemosphere.2013.08.080
Dermentzis K, Marmanis D, Christoforidis A, Moumtzakis A (2014) Photovoltaic electrocoagulation process for remediation of chromium plating wastewaters. Desalin Water Treat 56(5):1413–1418. https://doi.org/10.1080/19443994.2014.950992
Diao ZH, Xu XR, Liu FM, Sun YX, Zhang ZW, Sun KF, Wang SZ, Cheng H (2015) Photocatalytic degradation of malachite green by pyrite and its synergism with Cr(VI) reduction: performance and reaction mechanism. Sep Purif Technol 154:168–175. https://doi.org/10.1016/j.seppur.2015.09.027
Dong G, Wang Y, Gong L, Wang M, Wang H, He N, Zheng Y, Li Q (2013) Formation of soluble Cr(III) end-products and nanoparticles during Cr(VI) reduction by Bacillus cereus strain XMCr-6. Biochem Eng J 70:166–172. https://doi.org/10.1016/j.bej.2012.11.002
Duan WCG, Chen C, Duan W, Chen G, Chen C, Sanghvi R, Iddya A, Walker S, Liu H, Ronen A, Jassby D (2017) Electrochemical removal of hexavalent chromium using electrically conducting carbon nanotube/polymer composite ultrafiltration membranes. J Membr Sci 531:160–171. https://doi.org/10.1016/j.memsci.2017.02.050
Dubey S, Shri M, Gupta A, Rani V, Chakrabarty D (2018) Toxicity and detoxification of heavy metals during plant growth and metabolism. Environ Chem Lett 16(4):1169–1192. https://doi.org/10.1007/s10311-018-0741-8
Dubrawski KL, Du C, Mohseni M (2014) General potential-current model and validation for electrocoagulation. Electrochim Acta 129:187–195. https://doi.org/10.1016/j.electacta.2014.02.089
Fernandez PM, Cruz EL, Vinarta SC, Castellanos de Figueroa LI (2017) Optimization of culture conditions for growth associated with Cr(VI) removal by Wickerhamomyces anomalus M10. Bull Environ Contam Toxicol 98(3):400–406. https://doi.org/10.1007/s00128-016-1958-5
Focardi S, Pepi M, Landi G, Gasperini S, Ruta M, Di Biasio P, Focardi SE (2012) Hexavalent chromium reduction by whole cells and cell free extract of the moderate halophilic bacterial strain Halomonas sp. TA-04. Int Biodeterior Biodegrad 66(1):63–70. https://doi.org/10.1016/j.ibiod.2011.11.003
Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38. https://doi.org/10.1038/238037a0
Gavrilescu M (2004) Removal of heavy metals from the environment by biosorption. Eng Life Sci 4(3):219–232. https://doi.org/10.1002/elsc.200420026
Ge S, Dong X, Zhou J, Ge S (2013) Comparative evaluations on bio-treatment of hexavalent chromate by resting cells of Pseudochrobactrum sp. and Proteus sp. in wastewater. J Environ Manag 126:7–12. https://doi.org/10.1016/j.jenvman.2013.04.011
Gholizadeh A, Salmani MH, Ebrahimi AA, Hosseini SS, Ehrampoush MH, Miri M, Nikoonahad A, Pasalari H (2018) Improved power density and Cr/Pb removal using ozone in a microbial desalination cell. Environ Chem Lett 16(4):1477–1485. https://doi.org/10.1007/s10311-018-0760-5
Han X, Zhou TX, Xu SW, Li Y, Wang YF, Liu Y (2017) Removal of Cr(VI) and phenol coupled with the reduction of sulfate by sulfate-reducing bacteria sludge. Int J Environ Sci Technol 14(10):2173–2180. https://doi.org/10.1007/s13762-017-1302-6
Han HX, Shi C, Zhang N, Yuan L, Sheng GP (2018) Visible-light-enhanced Cr(VI) reduction at Pd-decorated silicon nanowire photocathode in photoelectrocatalytic microbial fuel cell. Sci Total Environ 639:1512–1519. https://doi.org/10.1016/j.scitotenv.2018.05.271
He R, Liu L, Shi P, Nie C (2018) Environmental decontamination using photocatalytic fuel cells and photoelectrocatalysis-microbial fuel cells. J Chem Technol Biotechnol 93(11):3336–3346. https://doi.org/10.1002/jctb.5729
He C, Lin W, Zheng X, Wang C, Hu Z, Wang W (2019) Synergistic effect of magnetite and zero-valent iron on anaerobic degradation and methanogenesis of phenol. Bioresour Technol 291:121874. https://doi.org/10.1016/j.biortech.2019.121874
Hora A, Shetty VK (2015) Partial purification and characterization of chromate reductase of a novel Ochrobactrum sp. strain Cr-B4. Prep Biochem Biotechnol 45(8):769–784. https://doi.org/10.1080/10826068.2014.952385
Hu YS, Jia Z, Yu L (2017) Removal of chromium(VI) from aqueous solutions by electrochemical reduction-precipitation. Int J Electrochem Sci 12:11387–11396. https://doi.org/10.20964/2017.12.12
Huang B, Gu L, He H, Xu Z, Pan X (2016) Enhanced biotic and abiotic transformation of Cr(VI) by quinone-reducing bacteria/dissolved organic matter/Fe(iii) in anaerobic environment. Environ Sci: Processes Impacts 18(9):1185–1192. https://doi.org/10.1039/c6em00229c
Ji DL, Zhu J, Ji M, Leng Y (2015) Enhanced photocatalytic reduction of Cr(VI) by manganese-doped anatase titanium dioxide. Res Chem Intermed 42(6):5413–5429. https://doi.org/10.1007/s11164-015-2375-9
Jobby R, Jha P, Yadav AK, Desai N (2018) Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: a comprehensive review. Chemosphere 207:255–266. https://doi.org/10.1016/j.chemosphere.2018.05.050
Karthik C, Ramkumar VS, Pugazhendhi A, Gopalakrishnan K, Arulselvi PI (2017) Biosorption and biotransformation of Cr(VI) by novel Cellulosimicrobium funkei strain AR6. J Taiwan Inst Chem Eng 70:282–290. https://doi.org/10.1016/j.jtice.2016.11.006
Katal R, Pahlavanzadeh H (2011) Influence of different combinations of aluminum and iron electrode on electrocoagulation efficiency: application to the treatment of paper mill wastewater. Desalination 265(1–3):199–205. https://doi.org/10.1016/j.desal.2010.07.052
Kebir M, Boudjemaa A, Azoudj Y, Sehailia M, Bachari K (2018) Chromium (VI) photo-reduction under visible and sunlight irradiation over bismuth-ferrites Bi2Fe4O9 photo-catalyst. Can J Chem Eng 96(10):2292–2298. https://doi.org/10.1002/cjce.23242
Kuppusamy S, Jayaraman N, Jagannathan M, Kadarkarai M, Aruliah R (2017) Electrochemical decolorization and biodegradation of tannery effluent for reduction of chemical oxygen demand and hexavalent chromium. J Water Process Eng 20:22–28. https://doi.org/10.1016/j.jwpe.2017.09.008
Li Z, Cong S, Xu Y (2014) Brookite vs anatase TiO2 in the photocatalytic activity for organic degradation in water. ACS Catal 4(9):3273–3280. https://doi.org/10.1021/cs500785z
Li M, Zhou S, Xu Y, Liu Z, Ma F, Zhi L, Zhou X (2018a) Simultaneous Cr(VI) reduction and bioelectricity generation in a dual chamber microbial fuel cell. Chem Eng J 334:1621–1629. https://doi.org/10.1016/j.cej.2017.11.144
Li Y, Liu Z, Wu Y, Chen J, Zhao J, Jin F, Na P (2018b) Carbon dots-TiO2 nanosheets composites for photoreduction of Cr(VI) under sunlight illumination: favorable role of carbon dots. Appl Catal B: Environ 224:508–517. https://doi.org/10.1016/j.apcatb.2017.10.023
Lian J, Li ZF, Xu ZF, Guo JB, Hu ZZ, Guo YK, Li M, Yang JL (2016) Isolation and Cr(VI) reduction characteristics of quinone respiration in Mangrovibacter plantisponsor strain CR1. Biotechnol Appl Biochem 63(4):595–600. https://doi.org/10.1002/bab.1395
Liu H, Huang J, Zhang S, Xu B, Wang G (2015) Chromate interaction with the chromate reducing actinobacterium Intrasporangium chromatireducens Q5-1. Geomicrobiol J 32(7):616–623. https://doi.org/10.1080/01490451.2014.971200
Liu C, Ding Y, Wu W, Teng Y (2016) A simple and effective strategy to fast remove chromium (VI) and organic pollutant in photoelectrocatalytic process at low voltage. Chem Eng J 306:22–30. https://doi.org/10.1016/j.cej.2016.07.043
Liu F, Yu J, Tu G, Qu L, Xiao J, Liu Y, Wang L, Lei J, Zhang J (2017) Carbon nitride coupled Ti-SBA15 catalyst for visible-light-driven photocatalytic reduction of Cr(VI) and the synergistic oxidation of phenol. Appl Catal B: Environ 201:1–11. https://doi.org/10.1016/j.apcatb.2016.08.001
Loloei M, Rezaee A, Roohaghdam AS, Aliofkhazraei M (2017) Conductive microbial cellulose as a novel biocathode for Cr(VI) bioreduction. Carbohydr Polym 162:56–61. https://doi.org/10.1016/j.carbpol.2017.01.046
Lu D, Zhao B, Fang P, Zhai S, Li D, Chen Z, Wu W, Chai W, Wu Y, Qi N (2015) Facile one-pot fabrication and high photocatalytic performance of vanadium doped TiO2-based nanosheets for visible-light-driven degradation of RhB or Cr(VI). Appl Surf Sci 359:435–448. https://doi.org/10.1016/j.apsusc.2015.10.138
Lu J, Wang ZR, Liu YL, Tang Q (2016) Removal of Cr ions from aqueous solution using batch electrocoagulation: Cr removal mechanism and utilization rate of in situ generated metal ions. Process Saf Environ Prot 104:436–443. https://doi.org/10.1016/j.psep.2016.04.023
Ma S, Song CS, Chen Y, Wang F, Chen HL (2018) Hematite enhances the removal of Cr(VI) by Bacillus subtilis BSn5 from aquatic environment. Chemosphere 208:579–585. https://doi.org/10.1016/j.chemosphere.2018.06.037
Mala JGS, Sujatha D, Rose C (2015) Inducible chromate reductase exhibiting extracellular activity in Bacillus methylotrophicus for chromium bioremediation. Microbiol Res 170:235–241. https://doi.org/10.1016/j.micres.2014.06.001
Malaviya P, Singh A (2016) Bioremediation of chromium solutions and chromium containing wastewaters. Crit Rev Microbiol 42(4):607–633. https://doi.org/10.3109/1040841X.2014.974501
Meng Y, Zhao Z, Burgos WD, Li Y, Zhang B, Wang Y, Liu W, Sun L, Lin L, Luan F (2018) Iron(III) minerals and anthraquinone-2,6-disulfonate (AQDS) synergistically enhance bioreduction of hexavalent chromium by Shewanella oneidensis MR-1. Sci Total Environ 640:591–598. https://doi.org/10.1016/j.scitotenv.2018.05.331
Miller II RB, Giai C, Iannuzzi M, Monty CN, Senko JM (2016) Microbial reduction of Cr(VI) in the presence of chromate conversion coating constituents. Biorem J 20(3):174–182. https://doi.org/10.1080/10889868.2016.1149443
Mishra PM, Naik GK, Nayak A, Parida KM (2016) Facile synthesis of nano-structured magnetite in presence of natural surfactant for enhanced photocatalytic activity for water decomposition and Cr(VI) reduction. Chem Eng J 299:227–235. https://doi.org/10.1016/j.cej.2016.04.052
Moakhar RS, Hariri MB, Kushwaha A, Dolati A, Ghorbani M, Goh GKL (2016) Au-Pd bimetallic nanoparticle electrodes for direct electroreduction of hexavalent chromium complexes. Aust J Chem 69(4):423–430. https://doi.org/10.1071/CH15660
Modoi OC, Roba C, Török Z, Ozunu A (2014) Environmental risks due to heavy metal pollution of water resulted from mining wastes in NW Romania. Environ Eng Manag J 13(9):2325–2336. https://doi.org/10.30638/eemj.2014.260
Mohagheghian A, Ayagh K, Godini K, Shirzad-Siboni M (2018) Photocatalytic reduction of Cr(VI) from synthetic, real drinking waters and electroplating wastewater by synthesized amino-functionalized Fe3O4–WO3 nanoparticles by visible light. J Ind Eng Chem 59:169–183. https://doi.org/10.1016/j.jiec.2017.10.021
Nagarjuna R, Challagulla S, Ganesan R, Roy S (2017) High rates of Cr(VI) photoreduction with magnetically recoverable nano-Fe3O4@Fe2O3/Al2O3 catalyst under visible light. Chem Eng J 308:59–66. https://doi.org/10.1016/j.cej.2016.09.044
Orozco AM, Contreras EM, Zaritzky NE (2008) Modelling Cr(VI) removal by a combined carbon-activated sludge system. J Hazard Mater 150(1):46–52. https://doi.org/10.1016/j.jhazmat.2007.04.043
Park CH, Keyhan M, Wielinga B, Fendorf S, Matin A (2000) Purification to homogeneity and characterization of a novel pseudomonas putida chromate reductase. Appl Environ Microbiol 66(5):1788–1795. https://doi.org/10.1128/AEM.66.5.1788-1795.2000
Peng H, Leng Y, Cheng Q, Shang Q, Shu J, Guo J (2019) Efficient removal of hexavalent chromium from wastewater with electro-reduction. Processes. https://doi.org/10.3390/pr7010041
Pettine M, Campanella L, Millero FJ (2002) Reduction of hexavalent chromium by H2O2 in acidic solutions. Environ Sci Technol 36(5):901–907. https://doi.org/10.1021/es010086b
Philip L, Iyengar L, Venkobachar C (1998) Cr(VI) reduction by Bacillus coagulans isolated from contaminated soils. J Environ Eng 124(12):1165–1170. https://doi.org/10.1061/(ASCE)0733-9372(1998)124:12(1165)
Praveen R, Ramaraj R (2016) Chemically reduced graphene oxide-P25-Au nanocomposite materials and their photoelectrocatalytic and photocatalytic applications. Photochem Photobiol Sci 15(10):1310–1317. https://doi.org/10.1039/c6pp00118a
Pulsa RW, Paula CJ, Powellb RM (1999) The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromatecontaminated groundwater: a field test. Appl Geochem 14(8):989–1000. https://doi.org/10.1016/S0883-2927(99)00010-4
Qiu LY, Wang QY, Liu ZY, Zhao QQ, Tian XY, Li HL, Gao SM (2018) Preparation of 3D TiO2 nanotube arrays photoelectrode on Ti mesh for photoelectric conversion and photoelectrocatalytic removal of pollutant. Sep Purif Technol 207:206–212. https://doi.org/10.1016/j.seppur.2018.06.050
Rodrigo MA, Cañizares P, Buitrón C, Sáez C (2010) Electrochemical technologies for the regeneration of urban wastewaters. Electrochim Acta 55(27):8160–8164. https://doi.org/10.1016/j.electacta.2010.01.053
Romanenko V, Korenkov V (1977) Pure culture of bacteria utilizing chromates and bichromates as hydrogen acceptors in growth under anaerobic conditions. Microbiology 46(3):329–332
Romo-Rodríguez P, Acevedo-Aguilar FJ, Lopez-Torres A, Wrobel K, Wrobel K, Gutiérrez-Corona JF (2015) Cr(VI) reduction by gluconolactone and hydrogen peroxide, the reaction products of fungal glucose oxidase: cooperative interaction with organic acids in the biotransformation of Cr(VI). Chemosphere 134:563–570. https://doi.org/10.1016/j.chemosphere.2014.12.009
Shen W, Kang H, Ai Z (2018) Comparison of aerobic atrazine degradation with zero valent aluminum and zero valent iron. J Hazard Mater 357:408–414. https://doi.org/10.1016/j.jhazmat.2018.06.029
Shi J, Zhao W, Liu C, Jiang T, Ding H (2017) Enhanced performance for treatment of Cr(VI)-containing wastewater by microbial fuel cells with natural pyrrhotite-coated cathode. Water 9(12):979. https://doi.org/10.3390/w9120979
Shi Z, Shen W, Yang K, Zheng N, Jiang X, Liu L, Yang D, Zhang L, Ai Z, Xie B (2019) Hexavalent chromium removal by a new composite system of dissimilatory iron reduction bacteria Aeromonas hydrophila and nanoscale zero-valent iron. Chem Eng J 362:63–70. https://doi.org/10.1016/j.cej.2019.01.030
Singh R, Bishnoi NR (2015) Biotransformation dynamics of chromium(VI) detoxification using Aspergillus flavus system. Ecol Eng 75:103–109. https://doi.org/10.1016/j.ecoleng.2014.11.023
Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK (2013) Chromium toxicity and tolerance in plants. Environ Chem Lett 11(3):229–254. https://doi.org/10.1007/s10311-013-0407-5
Song H, Shang J, Ye JH, Li Q (2014) Investigations on photoelectrocatalytic reduction of Cr (VI) over titanium dioxide anode and metal cathode. Thin Solid Films 551:158–162. https://doi.org/10.1016/j.tsf.2013.12.002
Song TS, Jin YJ, Bao JJ, Kang DZ, Xie JJ (2016) Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell. J Hazard Mater 317:738–780. https://doi.org/10.1016/j.jhazmat.2016.05.055
Sophia AC, Saikant S (2016) Reduction of chromium(VI) with energy recovery using microbial fuel cell technology. J Water Process Eng 11:39–45. https://doi.org/10.1016/j.jwpe.2016.03.006
Sriram S, Nambi IM, Chetty R (2018) Electrochemical reduction of hexavalent chromium on titania nanotubes with urea as an anolyte additive. Electrochimi Acta 284:427–435. https://doi.org/10.1016/j.electacta.2018.07.194
Sun M, Zhang G, Qin Y, Cao M, Liu Y, Li J, Qu J, Liu H (2015) Redox conversion of chromium(VI) and arsenic(III) with the intermediates of chromium(V) and arsenic(IV) via AuPd/CNTs electrocatalysis in acid aqueous solution. Environ Sci Technol 49(15):9289–9297. https://doi.org/10.1021/acs.est.5b01759
Suzuki T, Miyata N, Horitsu H, Kawai K, Takamizawa K, Tai Y, Okazaki M (1992) NAD(P)H-dependent chromium (VI) reductase of Pseudomonas ambigua G-1: a Cr(V) intermediate is formed during the reduction of Cr(VI) to Cr(III). J Bacteriol 174(16):5340–5345. https://doi.org/10.1128/jb.174.16.5340-5345.1992
Tan W, Yuan Y, Zhao X, Dang Q, Yuan Y, Li R, Cui D, Xi B (2019) Soil solid-phase organic matter-mediated microbial reduction of iron minerals increases with land use change sequence from fallow to paddy fields. Sci Total Environ 676:378–386. https://doi.org/10.1016/j.scitotenv.2019.04.288
Thatoi H, Das S, Mishra J, Rath BP, Das N (2014) Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. J Environ Manag 146:383–399. https://doi.org/10.1016/j.jenvman.2014.07.014
Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24(5):427–451. https://doi.org/10.1016/j.biotechadv.2006.03.001
Wang H, Na C (2014) Binder-free carbon nanotube electrode for electrochemical removal of chromium. ACS Appl Mater Interfaces 6(22):20309–20316. https://doi.org/10.1021/am505838r
Wang Z, Gao M, Wang S, Xin Y, Ma D, She Z, Wang Z, Chang Q, Ren Y (2014) Effect of hexavalent chromium on extracellular polymeric substances of granular sludge from an aerobic granular sequencing batch reactor. Chem Eng J 251:165–174. https://doi.org/10.1016/j.cej.2014.04.078
Wang Q, Shi X, Xu J, Crittenden JC, Liu E, Zhang Y, Cong Y (2016) Highly enhanced photocatalytic reduction of Cr(VI) on AgI/TiO2 under visible light irradiation: influence of calcination temperature. J Hazard Mater 307:213–220. https://doi.org/10.1016/j.jhazmat.2015.12.050
Wang D, Li Y, Puma GL, Lianos P, Wang C, Wang P (2017a) Photoelectrochemical cell for simultaneous electricity generation and heavy metals recovery from wastewater. J Hazard Mater 323:681–689. https://doi.org/10.1016/j.jhazmat.2016.10.037
Wang Q, Huang L, Pan Y, Quan X, Li Puma G (2017b) Impact of Fe(III) as an effective electron-shuttle mediator for enhanced Cr(VI) reduction in microbial fuel cells: reduction of diffusional resistances and cathode overpotentials. J Hazard Mater 321:896–906. https://doi.org/10.1016/j.jhazmat.2016.10.011
Wang P, Dong F, Liu M, He H, Huo T, Zhou L, Zhang W (2018a) Improving photoelectrochemical reduction of Cr(VI) ions by building alpha-Fe2O3/TiO2 electrode. Environ Sci Pollut Res Int 25(23):22455–22463. https://doi.org/10.1007/s11356-018-1382-y
Wang Q, Yuan Q, Liu Z, Jin R, Cui Y, Gao S (2018b) Ultrasound-assisted synthesis and solar-light-driven photoelectrocatalytic activity of CdS sensitized TiO2 nanotube array photocatalysts. Sep Purif Technol 194:216–221. https://doi.org/10.1016/j.seppur.2017.11.046
Wang Y, Chen Y, Wen Q (2018c) Microbial fuel cells: enhancement with a polyaniline/carbon felt capacitive bioanode and reduction of Cr(VI) using the intermittent operation. Environ Chem Lett 16(1):319–326. https://doi.org/10.1007/s10311-017-0678-3
Wang S, Li GS, Leng ZH, Wang Y, Fang SF, Wang JH, Wei YH, Li LP (2019) Systematic optimization of promoters in trace SnS2 coating SnO2 nano-heterostructure for high performance Cr(VI) photoreduction. Appl Surf Sci 471:813–1821. https://doi.org/10.1016/j.apsusc.2018.12.042
Watts MP, Khijniak TV, Boothman C, Lloyd JR (2015) Treatment of alkaline Cr(VI)-contaminated leachate with an alkaliphilic metal-reducing bacterium. Appl Environ Microbiol 81(16):5511–5518. https://doi.org/10.1128/AEM.00853-15
Xu Q, Li R, Wang C, Yuan D (2017) Visible-light photocatalytic reduction of Cr(VI) using nano-sized delafossite (CuFeO2) synthesized by hydrothermal method. J Alloys Compd 723:441–447. https://doi.org/10.1016/j.jallcom.2017.06.243
Xu F, Chen H, Xu C, Wu D, Gao Z, Zhang Q, Jiang K (2018) Ultra-thin Bi2WO6 porous nanosheets with high lattice coherence for enhanced performance for photocatalytic reduction of Cr(VI). J Colloid Interface Sci 525:97–106. https://doi.org/10.1016/j.jcis.2018.04.057
Xu Z, Xu X, Tsang DCW, Yang F, Zhao L, Qiu H, Cao X (2019) Participation of soil active components in the reduction of Cr(VI) by biochar: differing effects of iron mineral alone and its combination with organic acid. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2019.121455
Ya V, Guillou EL, Chen YM, Yu JH, Choo KH, Chuang SM, Lee SJ, Li CW (2018) Scrap iron packed in a Ti mesh cage as a sacrificial anode for electrochemical Cr(VI) reduction to treat electroplating wastewater. J Taiwan Inst Chem Eng 87:91–97. https://doi.org/10.1016/j.jtice.2018.03.016
Yang Y, Diao Mh, Mm Gao, Xf Sun, Xw Liu, Zhang Gh, Qi Z, Sg Wang (2014) Facile preparation of graphene/polyaniline composite and its application for electrocatalysis hexavalent chromium reduction. Electrochim Acta 132:496–503. https://doi.org/10.1016/j.electacta.2014.03.152
Yang J, Hao J, Xu S, Dai J, Wang Y, Pang X (2018) Visible-light-driven photocatalytic degradation of 4-CP and the synergistic reduction of Cr(VI) on one-pot synthesized amorphous Nb2O5 nanorods/graphene heterostructured composites. Chem Eng J 353:100–114. https://doi.org/10.1016/j.cej.2018.07.115
Ye M, Wei W, Zheng L, Liu Y, Wu D, Gu X, Wei A (2019) Enhanced visible light photoreduction of aqueous Cr(VI) by Ag/Bi4O7/g–C3N4 nanosheets ternary metal/non-metal Z-scheme heterojunction. J Hazard Mater 365:674–683. https://doi.org/10.1016/j.jhazmat.2018.11.069
Yuan Q, Chen L, Xiong M, He J, Luo SL, Au CT, Yin SF (2014) Cu2O/BiVO4 heterostructures: synthesis and application in simultaneous photocatalytic oxidation of organic dyes and reduction of Cr(VI) under visible light. Chem Eng J 255:394–402. https://doi.org/10.1016/j.cej.2014.06.031
Zhang Y, Park SJ (2019) Stabilization of dispersed CuPd bimetallic alloy nanoparticles on ZIF-8 for photoreduction of Cr(VI) in aqueous solution. Chem Eng J 369:353–362. https://doi.org/10.1016/j.cej.2019.03.083
Zhang D, Xu G, Chen F (2015) Hollow spheric Ag-Ag2S/TiO2 composite and its application for photocatalytic reduction of Cr(VI). Appl Surf Sci 351:962–968. https://doi.org/10.1016/j.apsusc.2015.06.044
Zhang Y, Wang Q, Lu J, Wang Q, Cong Y (2016) Synergistic photoelectrochemical reduction of Cr(VI) and oxidation of organic pollutants by g-C3N4/TiO2-NTs electrodes. Chemosphere 162:55–63. https://doi.org/10.1016/j.chemosphere.2016.07.064
Zhang Y, Xu M, Li H, Ge H, Bian Z (2018a) The enhanced photoreduction of Cr(VI) to Cr(III) using carbon dots coupled TiO2 mesocrystals. Appl Catal B: Environ 226:213–219. https://doi.org/10.1016/j.apcatb.2017.12.053
Zhang Y, Zhang D, Zhou L, Zhao Y, Chen J, Chen Z, Wang F (2018b) Polypyrrole/reduced graphene oxide aerogel particle electrodes for high efficiency electro-catalytic synergistic removal of Cr(VI) and bisphenol A. Chem Eng J 336:690–700. https://doi.org/10.1016/j.cej.2017.11.109
Zhao R, Wang B, Cai QT, Li XX, Min LI, Dong H, Guo DB, Wang J, Chun F (2016) Bioremediation of hexavalent chromium pollution by Sporosarcina saromensis M52 isolated from offshore sediments in Xiamen. China. Biomed Environ Sci 29(2):127–136. https://doi.org/10.3967/bes2016.014
Zhao X, Wu P, Liu M, Lu D, Ming J, Li C, Ding J, Yan Q, Fang P (2017a) Y2O3 modified TiO2 nanosheets enhanced the photocatalytic removal of 4-chlorophenol and Cr(VI) in sun light. Appl Surf Sci 410:134–144. https://doi.org/10.1016/j.apsusc.2017.03.073
Zhao Y, Chang W, Huang Z, Feng X, Ma L, Qi X, Li Z (2017b) Enhanced removal of toxic Cr(VI) in tannery wastewater by photoelectrocatalysis with synthetic TiO2 hollow spheres. Appl Surf Sci 405:102–110. https://doi.org/10.1016/j.apsusc.2017.01.306
Zhilin DM, Schmitt-Kopplin P, Perminova IV (2004) Reduction of Cr(VI) by peat and coal humic substances. Environ Chem Lett 2(3):141–145. https://doi.org/10.1007/s10311-004-0085-4
Ziagova MG, Koukkou AI, Liakopoulou KM (2014) Optimization of cultural conditions of Arthrobacter sp. Sphe3 for growth-associated chromate(VI) reduction in free and immobilized cell systems. Chemosphere 95:535–540. https://doi.org/10.1016/j.chemosphere.2013.09.112
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant Numbers 41761092, 21866017 and 51878321) and the Applied Basic Research Foundation of Yunnan Province (Grant Number 2019FB015).
Author information
Authors and Affiliations
Contributions
Xuejun Pan put forward the conception for the review article. The literature search and data analysis were performed by Caiwen He and Lipeng Gu. The first draft of the manuscript was written by Caiwen He and Zhixiang Xu, and other authors (Huan He, Gen Fu, Fengxia Han, Bin Huang) critically revised the work. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
He, C., Gu, L., Xu, Z. et al. Cleaning chromium pollution in aquatic environments by bioremediation, photocatalytic remediation, electrochemical remediation and coupled remediation systems. Environ Chem Lett 18, 561–576 (2020). https://doi.org/10.1007/s10311-019-00960-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10311-019-00960-3