Abstract
Photoelectrochemical process is an environmentally friendly technology and has a wide application in the control of environmental pollutants. Efficient nanophotocatalysts responsive to visible light are still highly attractive. In this work, α-Fe2O3/TiO2 were grown on fluorine doped tin oxide (FTO) substrates by hydrothermal method for photoelectrochemical reduction of Cr(VI). Compared with the separate α-Fe2O3 and TiO2 electrodes, the composite α-Fe2O3/TiO2 electrodes show higher photocurrent density. Under visible light irradiation, 100% removal efficiency of Cr(VI) was obtained after 40 min treatment. The composite α-Fe2O3/TiO2 electrodes showed an enhanced absorbance in visible light region and had good stability to photoelectrochemical reduction of Cr(VI). The role of hole scavengers (citric acid and oxalic acid) and pH values was systematically investigated. This novel intensification approach provides new insight on the application of photoelectrochemical reduction in environmental remediation.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Azad A, Kang W, Kim S-J (2014) Preparation and photoelectrochemical properties of Fe2O3–TiO2 based photoanode for water splitting. One Central Press, UK, pp 79–107
Banerjee S, Mohapatra SK, Das PP, Misra M (2008) Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS. Chem Mater 20(21):6784–6791. https://doi.org/10.1021/cm802282t
Bian L, Li YJ, Li J, Nie JN, Dong FQ, Song MX et al (2017a) Photovoltage response of (XZn) Fe2O4-BiFeO3 (X= Mg, Mn or Ni) interfaces for highly selective Cr3+, Cd2+, Co2+ and Pb2+ ions detection. J Hazard Mater 336:174–187. https://doi.org/10.1016/j.jhazmat.2017.04.071
Bian L, Li HL, Li YJ, Nie JN, Dong FQ, Dong HL et al (2017b) Enhanced photovoltage response of hematite-X-ferrite interfaces (X= Cr, Mn, Co, or Ni). Nanoscale Res Lett 12(1):136
Bian L, Li HL, Dong HL, Dong FQ, Song MX, Wang LS et al (2017c) Fluorescent enhancement of bio-synthesized X-Zn-ferrite-bismuth ferrite (X= Mg, Mn or Ni) membranes: experiment and theory. Appl Surf Sci 396:1177–1186. https://doi.org/10.1016/j.apsusc.2016.11.108
Cai J, Wu X, Zheng F, Li S, Wu Y, Lin Y, Lin L, Liu B, Chen Q, Lin L (2017) Influence of TiO2 hollow sphere size on its photo-reduction activity for toxic Cr(VI) removal. J Colloid Interface Sci 490:37–45. https://doi.org/10.1016/j.jcis.2016.11.025
Dhara S, Giri P (2011) On the origin of enhanced photoconduction and photoluminescence from Au and Ti nanoparticles decorated aligned ZnO nanowire heterostructures. J Appl Phys 110(12):124317. https://doi.org/10.1063/1.3671023
Diao Z-H, Xu X-R, Jiang D, Liu J-J, Kong L-J, Li G, Zuo L-Z, Wu Q-H (2017) Simultaneous photocatalytic Cr(VI) reduction and ciprofloxacin oxidation over TiO2/Fe0 composite under aerobic conditions: performance, durability, pathway and mechanism. Chem Eng J 315:167–176. https://doi.org/10.1016/j.cej.2017.01.006
Divrikli U, Kartal AA, Soylak M, Elci L (2007) Preconcentration of Pb(II), Cr(III), Cu(II), Ni(II) and Cd(II) ions in environmental samples by membrane filtration prior to their flame atomic absorption spectrometric determinations. J Hazard Mater 145(3):459–464. https://doi.org/10.1016/j.jhazmat.2006.11.040
Fabregat-Santiago F, Mora-Seró I, Garcia-Belmonte G, Bisquert J (2003) Cyclic voltammetry studies of nanoporous semiconductors. Capacitive and reactive properties of nanocrystalline TiO2 electrodes in aqueous electrolyte. J Phys Chem B 107(3):758–768. https://doi.org/10.1021/jp0265182
Gode F, Pehlivan E (2005) Removal of Cr(VI) from aqueous solution by two Lewatit-anion exchange resins. J Hazard Mater 119(1-3):175–182. https://doi.org/10.1016/j.jhazmat.2004.12.004
He H, Berglund SP, Rettie AJ, Chemelewski WD, Xiao P, Zhang Y, Mullins CB (2014) Synthesis of BiVO4 nanoflake array films for photoelectrochemical water oxidation. J Mater Chem A 2(24):9371–9379. https://doi.org/10.1039/C4TA00895B
He H, Zhou Y, Ke G, Zhong X, Yang M, Bian L, Lv K, Dong F (2017) Improved surface charge transfer in MoO3/BiVO4 heterojunction film for photoelectrochemical water oxidation. Electrochim Acta 257:181–191. https://doi.org/10.1016/j.electacta.2017.10.013
Jin W, Moats MS, Zheng S, Du H, Zhang Y, Miller JD (2011) Modulated Cr(III) oxidation in KOH solutions at a gold electrode: competition between disproportionation and stepwise electron transfer. Electrochim Acta 56(24):8311–8318. https://doi.org/10.1016/j.electacta.2011.06.110
Jin W, Wu G, Chen A (2014) Sensitive and selective electrochemical detection of chromium(VI) based on gold nanoparticle-decorated titania nanotube arrays. Analyst 139(1):235–241. https://doi.org/10.1039/C3AN01614E
Jin W, Du H, Yan K, Zheng S, Zhang Y (2016) Improved electrochemical Cr(VI) detoxification by integrating the direct and indirect pathways. J Electroanal Chem 775:325–328. https://doi.org/10.1016/j.jelechem.2016.06.030
Kim YK, Lee S, Ryu J, Park H (2015) Solar conversion of seawater uranium(VI) using TiO2 electrodes. Appl Catal B Environ 163:584–590. https://doi.org/10.1016/j.apcatb.2014.08.041
Liu X, Pan L, Lv T, Sun Z (2014) CdS sensitized TiO2 film for photocatalytic reduction of Cr(VI) by microwave-assisted chemical bath deposition method. J Alloys Compd 583:390–395. https://doi.org/10.1016/j.jallcom.2013.08.193
Long M, Zhou C, Xia S, Guadiea A (2017) Concomitant Cr(VI) reduction and Cr (III) precipitation with nitrate in a methane/oxygen-based membrane biofilm reactor. Chem Eng J 315:58–66. https://doi.org/10.1016/j.cej.2017.01.018
Lu A, Li Y, Jin S, Wang X, Wu XL, Zeng C et al (2012a) Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis. Nat Commun 3(1):768. https://doi.org/10.1038/ncomms1768
Lu A, Li Y, Jin S (2012b) Interactions between semiconducting minerals and bacteria under light. Elements 8(2):125–130. https://doi.org/10.2113/gselements.8.2.125
Mao L, Deng N, Liu L, Cui H, Zhang W (2016) Effects of Al2O3, Fe2O3, and SiO2 on Cr(VI) formation during heating of solid waste containing Cr(III). Chem Eng J 304:216–222. https://doi.org/10.1016/j.cej.2016.06.086
Mo X, Yang Z-h, H-y X, G-m Z, Huang J, Yang X, P-p S, L-k W (2015) Combination of cathodic reduction with adsorption for accelerated removal of Cr(VI) through reticulated vitreous carbon electrodes modified with sulfuric acid–glycine co-doped polyaniline. J Hazard Mater 286:493–502. https://doi.org/10.1016/j.jhazmat.2015.01.002
Mulmudi HK, Mathews N, Dou XC, Xi LF, Pramana SS, Lam YM, Mhaisalkar SG (2011) Controlled growth of hematite (α-Fe2O3) nanorod array on fluorine doped tin oxide: synthesis and photoelectrochemical properties. Electrochem Commun 13(9):951–954. https://doi.org/10.1016/j.elecom.2011.06.008
Palanisamy B, Babu CM, Sundaravel B, Anandan S, Murugesan V (2013) Sol–gel synthesis of mesoporous mixed Fe2O3/TiO2 photocatalyst: application for degradation of 4-chlorophenol. J Hazard Mater 252:233–242
Qiu B, Xu C, Sun D, Wei H, Zhang X, Guo J, Wang Q, Rutman D, Guo Z, Wei S (2014) Polyaniline coating on carbon fiber fabrics for improved hexavalent chromium removal. RSC Adv 4(56):29855–29865. https://doi.org/10.1039/c4ra01700e
Ravishankar T, Muralikrishna S, Nagaraju G, Ramakrishnappa T (2015) Electrochemical detection and photochemical detoxification of hexavalent chromium (Cr(VI)) by Ag doped TiO2 nanoparticles. Anal Methods 7(8):3493–3499. https://doi.org/10.1039/C5AY00096C
Ren G, Sun M, Sun Y, Li Y, Wang C, Lu A, Ding H (2017) A cost-effective birnessite–silicon solar cell hybrid system with enhanced performance for dye decolorization. RSC Adv 7(76):47975–47982. https://doi.org/10.1039/C7RA08468D
Selvi K, Pattabhi S, Kadirvelu K (2001) Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon. Bioresour Technol 80(1):87–89. https://doi.org/10.1016/S0960-8524(01)00068-2
Shen W, Mu Y, Xiao T, Ai Z (2016) Magnetic Fe3O4–FeB nanocomposites with promoted Cr(VI) removal performance. Chem Eng J 285:57–68. https://doi.org/10.1016/j.cej.2015.09.053
Statistica SI (2004) Data analysis software system: version
Thakur RS, Chaudhary R, Singh C (2014) Influence of pH on photocatalytic reduction, adsorption, and deposition of metal ions: speciation modeling. Desalin Water Treat 56(5):1335–1363. https://doi.org/10.1080/19443994.2014.944222
Traid HD, Vera ML, Ares AE, Litter MI (2017) Advances on the synthesis of porous TiO 2 coatings by anodic spark oxidation. Photocatalytic reduction of Cr(VI). Mater Chem Phys 191:106–113. https://doi.org/10.1016/j.matchemphys.2017.01.034
Velasco G, Gutiérrez-Granados S, de León CP, Alatorre A, Walsh F, Rodríguez-Torres I (2016) The electrochemical reduction of Cr(VI) ions in acid solution at titanium and graphite electrodes. J Environ Chem Eng 4(3):3610–3617. https://doi.org/10.1016/j.jece.2016.08.004
Velazquez-Peña S, Linares-Hernández I, Martínez-Miranda V, Barrera-Díaz C, Bilyeu B (2013) Azo dyes as electron transfer mediators in the electrochemical reduction of Cr(VI) using boron-doped diamond electrodes. Fuel 110:12–16. https://doi.org/10.1016/j.fuel.2012.11.019
Walsh F (2001) Electrochemical technology for environmental treatment and clean energy conversion. Pure Appl Chem 73:1819–1837
Wang H-Q, Zhang X-H, Zheng F-H, Huang Y-G, Li Q-Y (2014a) Surfactant effect on synthesis of core-shell LiFePO4/C cathode materials for lithium-ion batteries. J Solid State Electrochem 19(1):187–194. https://doi.org/10.1007/s10008-014-2598-5
Wang T, Yang G, Liu J, Yang B, Ding S, Yan Z, Xiao T (2014b) Orthogonal synthesis, structural characteristics, and enhanced visible-light photocatalysis of mesoporous Fe2O3/TiO2 heterostructured microspheres. Appl Surf Sci 311:314–323. https://doi.org/10.1016/j.apsusc.2014.05.060
Wang C-C, Du X-D, Li J, Guo X-X, Wang P, Zhang J (2016a) Photocatalytic Cr(VI) reduction in metal-organic frameworks: a mini-review. Appl Catal B Environ 193:198–216. https://doi.org/10.1016/j.apcatb.2016.04.030
Wang Q, Shi X, Xu J, Crittenden JC, Liu E, Zhang Y, Cong Y (2016b) Highly enhanced photocatalytic reduction of Cr(VI) on AgI/TiO2 under visible light irradiation: influence of calcination temperature. J Hazard Mater 307:213–220. https://doi.org/10.1016/j.jhazmat.2015.12.050
Xiao D, Dai K, Qu Y, Yin Y, Chen H (2015) Hydrothermal synthesis of α-Fe2O 3/gC3N4 composite and its efficient photocatalytic reduction of Cr(VI) under visible light. Appl Surf Sci 358:181–187. https://doi.org/10.1016/j.apsusc.2015.09.042
Yadav SK, Jeevanandam P (2015) Thermal decomposition approach for the synthesis of CdS–TiO2 nanocomposites and their catalytic activity towards degradation of rhodamine B and reduction of Cr(VI). Ceram Int 41(2):2160–2179. https://doi.org/10.1016/j.ceramint.2014.10.016
Yanilmaz M, Lu Y, Zhu J, Zhang X (2016) Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol-gel and electrospinning techniques for lithium-ion batteries. J Power Sources 313:205–212. https://doi.org/10.1016/j.jpowsour.2016.02.089
Zheng Y, Luo C, Liu L, Yang Z, Ren S, Cai Y, Xiong J (2016) Synthesis of hierarchical TiO2/SnO2 photocatalysts with different morphologies and their application for photocatalytic reduction of Cr(VI). Mater Lett 181:169–172. https://doi.org/10.1016/j.matlet.2016.06.031
Zhitkovich A (2011) Chromium in drinking water: sources, metabolism, and cancer risks. Chem Res Toxicol 24(10):1617–1629. https://doi.org/10.1021/tx200251t
Funding
This work was supported by the National Basic Research Program of China (973 Program: 2014CB846003).
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible editor: Suresh Pillai
Electronic supplementary material
ESM 1
(DOC 505 kb)
Rights and permissions
About this article
Cite this article
Wang, P., Dong, F., Liu, M. et al. Improving photoelectrochemical reduction of Cr(VI) ions by building α-Fe2O3/TiO2 electrode. Environ Sci Pollut Res 25, 22455–22463 (2018). https://doi.org/10.1007/s11356-018-1382-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11356-018-1382-y