Abstract
While head-mounted display-based virtual reality (VR) can produce compelling feelings of presence (or “being there”) in its users, it also often induces motion sickness. This study compared the presence, cybersickness and perceptions of self-motion (or “vection”) induced when using two common methods of virtual locomotion: steering locomotion and teleporting. In four trials, conducted over two separate days, 25 participants repeatedly explored the “Red Fall” virtual environment in the game Nature Treks VR for 16 min at a time. Although steering locomotion was found to be more sickening on average than teleporting, 9 participants reported more severe sickness while teleporting. On checking their spontaneous postural activity before entering VR, these “TELEsick” participants were found to differ from “STEERsick” participants in terms of their positional variability when attempting to stand still. While cybersickness was not altered by having the user stand or sit during gameplay, presence was enhanced by standing during virtual locomotion. Cybersickness was found to increase with time in trial for both methods of virtual locomotion. By contrast, presence only increased with time in trial during steering locomotion (it did not vary over time when teleporting). Steering locomotion was also found to generate greater presence for female, but not male, participants. While there was not a clear advantage for teleporting over steering locomotion in terms of reducing cybersickness, we did find some evidence of the benefits of steering locomotion for presence.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
The authors acknowledge the limitations of subjective measures of presence. It is suggested that future studies utilize a combination of subjective and objective measures to examine this complex phenomenon.
Although it is commonly assumed that teleporting reduces sensory conflict, it is possible that some users experience expectancy violations due to the lack of visual and non-visual sensory information about their simulated self-displacement.
In the current study, we found that only two of our 12 female participants regularly played video games, compared to ten of our 13 male participants.
References
Al Zayer M, Adhanom IB, MacNeilage P, Folmer E (2019) The effect of field-of-view restriction on sex bias in VR sickness and spatial navigation performance. CHI Conf Hum Factors Comput Syst Proc. https://doi.org/10.1145/3290605.3300584
Allen B, Hanley T, Rokers B, Green CS (2016) Visual 3D motion acuity predicts discomfort in 3D stereoscopic environments. Entertain Comput 13:1–9. https://doi.org/10.1016/j.entcom.2016.01.001
Arcioni B, Palmisano S, Apthorp D, Kim J (2018) Postural stability predicts the likelihood of cybersickness in active HMD-based virtual reality. Displays 58:3–11. https://doi.org/10.1016/j.displa.2018.07.001
Bangay S, Preston L (1998) An investigation into factors influencing immersion in interactive virtual reality environments. Stud Health Technol Inf. https://doi.org/10.1016/j.apergo.2016.05.003
Bhagat K, Wei-Kai L, Chun-Yen C (2016) A cost-effective interactive 3D virtual reality system applied to military live firing training. Virtual Real 20:127–140. https://doi.org/10.1007/s10055-016-0284-x
Bles W, Bos JE, De Graaf B, Groen E, Wertheim AH (1998) Motion sickness: only one provocative conflict? Brain Res Bull 47:481–487. https://doi.org/10.1016/S0361-9230(98)00115-4
Boletsis C (2017) The new era of virtual reality locomotion: a systematic literature review of techniques and a proposed typology. Multimodal Technol Interact 1:24. https://doi.org/10.3390/mti1040024
Bonato F, Bubka A, Alfieri L (2004) Display color affects motion sickness symptoms in an optokinetic drum. Aviat Space Environ Med 75:306–311
Bonato F, Bubka A, Story M (2005) Rotation direction change hastens motion sickness onset in an optokinetic drum. Aviat Space Environ Med 76:823–827
Bonato F, Bubka A, Palmisano S, Phillip D, Moreno G (2008) Vection change exacerbates simulator sickness in virtual environments. Presence Teleoperators Virtual Environ 17:283–292. https://doi.org/10.1162/pres.17.3.283
Bonnet CT, Faugloire E, Riley MA, Bardy BG, Stoffregen TA (2006) Motion sickness preceded by unstable displacements of the center of pressure. Hum Mov Sci 25:800–820. https://doi.org/10.1016/j.humov.2006.03.001
Bouchard S, Robillard G, S-Jacques J, Dumoulin S, Patry MJ, Renaud P (2004) Reliability and validity of a single-item measure of presence in VR. In: Proceedings of the 2nd international conference on creating, connecting and collaborating through computing:56–61. https://doi.org/10.1109/HAVE.2004.1391882
Bowman DA, Koller D, Hodges LF (1997) Travel in immersive virtual environments: an evaluation of viewpoint motion control techniques. Proc IEEE Ann Int Symp Virtual Real 1997:45–52. https://doi.org/10.1109/VRAIS.1997.583043
Bozgeyikli E, Raij A, Katkoori S, Dubey R (2016) Point & teleport locomotion technique for virtual reality. In: Proceedings of the 2016 annual symposium on computer–human interaction in play 205–216. https://doi.org/10.1145/2967934.2968105
Busscher B, de Vliegher D, Ling Y, Brinkman WP (2011) Physiological measures and self-report to evaluate neutral virtual reality worlds. J Cybertherapy Rehabilit 4:15–25
Cao Z, Jerald J, Kopper R (2018). Visually-induced motion sickness reduction via static and dynamic rest frames. Proc IEEE Virtual Real 3D User Interfaces 2018:105–112 https://doi.org/10.1109/VR.2018.8446210
Chang CH, Pan WW, Tseng LY, Stoffregen TA (2012) Postural activity and motion sickness during video game play in children and adults. Exp Brain Res 217:299–309. https://doi.org/10.1007/s00221-011-2993-4
Chang CH, PanWW Chen FC, Stoffregen TA (2013) Console video games, postural activity, and motion sickness during passive restraint. Exp Brain Res 229:235–242. https://doi.org/10.1007/s00221-013-3609-y
Christou CG, Aristidou P (2017) Steering versus teleport locomotion for head mounted displays. Proc Int Conf Augment Real Virtual Real Comput Gr 2017:431–446. https://doi.org/10.1007/978-3-319-60928-7_37
Cook HE, Hassebrock JA, Smart LJ (2018) Other People’s Posture: visually induced motion sickness from naturally generated optic flow. Front Psychol 9:1901. https://doi.org/10.3389/fpsyg.2018.01901
Cooper N, Milella F, Cant I, Pinto C, White MD, Meyer GF (2016) The effects of multisensory cues on the sense of presence and task performance in a virtual reality environment. Perception 45:332–333
Cummings JJ, Bailenson JN (2016) How immersive is enough? A meta-analysis of the effect of immersive technology on user presence. Media Psychol 19:272–309. https://doi.org/10.1080/15213269.2015.1015740
De Leo G, Diggs LA, Radici E, Mastaglio TW (2014) Measuring sense of presence and user characteristics to predict effective training in an online simulated virtual environment. Simul Healthc 9:1–6. https://doi.org/10.1097/SIH.0b013e3182a99dd9
Diels C, Ukai K, Howarth PA (2007) Visually induced motion sickness with radial displays: effects of gaze angle and fixation. Aviat Space Environ Med 78:659–665
Felnhofer A, Kothgassner OD, Beutl L, Hlavacs H, Kryspin-Exner I (2012) Is virtual reality made for men only? Exploring gender differences in the sense of presence. In: Proceedings of the international society on presence research:103–12
Felnhofer A, Kothgassner OD, Hauk N, Beutl L, Hlavacs H, Kryspin-Exner I (2014) Physical and social presence in collaborative virtual environments: exploring age and gender differences with respect to empathy. Comput Hum Behav 31:272–279. https://doi.org/10.1016/j.chb.2013.10.045
Flanagan MB, May JG, Dobie TG (2002) Optokinetic nystagmus, vection, and motion sickness. Aviat Space Environ Med 73:1067–1073
Freitag S, Rausch D, Kuhlen T (2014) Reorientation in virtual environments using interactive portals. In: 2014 IEEE symposium on 3D user interfaces (3DUI):119–122. https://doi.org/10.1109/3DUI.2014.6798852
Frommel J, Sonntag S, Weber M (2017) Effects of controller-based locomotion on player experience in a virtual reality exploration game. In: Proceedings of the 12th international conference on the foundations of digital games, pp 30–36. https://doi.org/10.1145/3102071.3102082
Gamito P, Oliveira J, Santos P, Morais D, Saraiva T, Pombal M, Mota B (2008) Presence, immersion and cybersickness assessment through a test anxiety virtual environment. Ann Rev CyberTherapy Telemed 6:83–90
Garcia A, Baldwin C, Dworsky M (2010) Gender differences in simulator sickness in fixed-versus rotating-base driving simulator. Proc Hum Factors Ergon Soc Ann Meet 54:1551–1555. https://doi.org/10.1177/154193121005401941
Gavgani AM, Hodgson DM, Nalivaiko E (2017) Effects of visual flow direction on signs and symptoms of cybersickness. PLoS ONE. https://doi.org/10.1371/journal.pone.0182790
Golding JF, Doolan K, Acharya A, Tribak M, Gresty MA (2012) Cognitive cues and visually induced motion sickness. Aviat Space Environ Med 83:477–482. https://doi.org/10.3357/ASEM.3095.2012
Habgood J, Moore D, Wilson D, Alapont S (2018) Rapid, continuous movement between nodes as an accessible virtual reality locomotion technique. Proc IEEE Virtual Real. https://doi.org/10.1109/VR.2018.8446130
Hill K, Howarth P (2000) Habituation to the side effects of immersion in a virtual environment. Displays 21:25–30. https://doi.org/10.1016/S0141-9382(00)00029-9
Huurnink A, Fransz DP, Kingma I, van Dieën JH (2013) Comparison of a laboratory grade force platform with a Nintendo Wii Balance Board on measurement of postural control in single-leg stance balance tasks. J Biomech 46:1392–1395. https://doi.org/10.1016/j.jbiomech.2013.02.018
Ji JT, So RH, Cheung RT (2009) Isolating the effects of vection and optokinetic nystagmus on optokinetic rotation-induced motion sickness. Hum Factors 51:739–751. https://doi.org/10.1177/0018720809349708
Kennedy RS, Lane NE, Berbaum KS, Lilienthal MG (1993) Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int J Aviat Psychol 3:203–220. https://doi.org/10.1207/s15327108ijap0303_3
Keshavarz B, Hecht H (2011) Validating an efficient method to quantify motion sickness. Hum Factors 53:415–426. https://doi.org/10.1177/0018720811403736
Keshavarz B, Hettinger LJ, Vena D, Campos JL (2014) Combined effects of auditory and visual cues on the perception of vection. Exp Brain Res 232:827–836. https://doi.org/10.1007/s00221-013-3793-9
Keshavarz B, Hecht H, Lawson BD (2015) Visually induced motion sickness: causes, characteristics, and countermeasures. In: Hale KS, Stanney KM (eds) Handbook of virtual environments: design, implementation, and applications. CRC Press, Florida, Boca Raton, pp 647–689
Keshavarz B, Novak AC, Hettinger LJ, Stoffregen TA, Campos JL (2017) Passive restraint reduces visually induced motion sickness in older adults. J Exp Psychol Appl 23:85–99. https://doi.org/10.1037/xap0000107
Keshavarz B, Phillip-Muller AE, Hemmerich W, Riecke BE, Campos JL (2018) The effect of visual motion stimulus characteristics on vection and visually induced motion sickness. Displays 58:71–81. https://doi.org/10.1016/j.displa.2018.07.005
Kim J, Palmisano S (2010) Eccentric gaze dynamics enhance vection in depth. Journal of Vision 10(12):7. https://doi.org/10.1167/10.12.7
Kim YY, Kim HJ, Kim EN, Ko HD, Kim HT (2005) Characteristic changes in the physiological components of cybersickness. Psychophysiology 42:616–625. https://doi.org/10.1111/j.1469-8986.2005.00349.x
Knight MM, Arns LL (2006) The relationship among age and other factors on incidence of cybersickness in immersive environment users. In: Proceedings of the 3Rd symposium: applied perception in graphics & visualization 162. https://doi.org/10.1145/1140491.1140539
Koslucher F, Haaland E, Malsch A, Webeler J, Stoffregen TA (2015) Sex difference in the incidence of motion sickness induced by linear visual oscillation. Aerosp Med Hum Perform 86:787–793. https://doi.org/10.3357/AMHP.4243.2015
Koslucher F, Haaland E, Stoffregen TA (2016) Sex differences in visual performance and postural sway precede sex differences in visually induced motion sickness. Exp Brain Res 234:313–322. https://doi.org/10.1007/s00221-015-4462-y
Lachlan K, Kremar M (2011) Experiencing presence in video games: the role of presence tendencies, game experience, gender, and time spent in play. Commun Res Rep 28:27–31. https://doi.org/10.1080/08824096.2010.518924
Lackner JR (2014) Motion sickness: more than nausea and vomiting. Exp Brain Res 232:2493–2510. https://doi.org/10.1007/s00221-014-4008-8
Langbehn E, Lubos P, Steinicke F (2018) evaluation of locomotion techniques for room-scale VR. Joystick, teleportation, and redirected walking. In: Proceedings of the virtual reality international conference (VRIC). https://doi.org/10.1145/3234253.3234291
Lawson BD (2005) Exploiting the illusion of self-motion (vection) to achieve a feeling of ‘virtual acceleration’ in an immersive display. In: Proceedings of the 11th international conference on human–computer interaction 2005, Las Vegas, NV, pp 1–10
Lawson BD (2015) Motion sickness symptomatology and origins. In: Hale KS, Stanney KM (eds) Handbook of virtual environments: design, implementation, and applications. CRC Press, Florida, Boca Raton, pp 532–587
Lawther A, Griffin MJ (1988) A survey of the occurrence of motion sickness amongst passengers at sea. Aviat Space Environ Med 59:399–406. https://doi.org/10.1080/00140138808966783
Lin JW, Duh HBL, Parker DE, Abi-Rached H, Furness TA (2002) Effects of field of view on presence, enjoyment, memory, and simulator sickness in a virtual environment. Proc IEEE Virtual Real 2002:164–171. https://doi.org/10.1109/VR.2002.996519
Ling Y, Nefs HT, Brinkman WP, Qu C, Heynderickx I (2013) The relationship between individual characteristics and experienced presence. Comput Hum Behav 29:1519–1530. https://doi.org/10.1371/journal.pone.0096144
Ling Y, Nefs HT, Morina N, Heynderickx I, Brinkman WP (2014) A meta-analysis on the relationship between self-reported presence and anxiety in virtual reality exposure therapy for anxiety disorders. PLoS ONE 9:1–12. https://doi.org/10.1371/journal.pone.0096144
Liu CL, Uang ST (2011) Effects of presence on causing cybersickness in the elderly within a 3D virtual store. In: International conference on human-computer interaction, pp 490–499. https://doi.org/10.1007/978-3-642-21619-0_61
Liu X, Liu Y, Zhu X, An M, Hu F (2016) Virtual reality based navigation training for astronaut moving in a simulated space station. In: International conference on virtual, augmented and mixed reality, pp 416–423. https://doi.org/10.1007/978-3-319-39907-2_40
Llorach G, Evans A, Blat J (2014) Simulator sickness and presence using HMDs: comparing use of a game controller and a position estimate system. In: Proceedings of the 20th ACM symposium on virtual reality software and technology, pp 137–140. https://doi.org/10.1145/2671015.2671120
Lorch RF, Myers JL (1990) Regression analyses of repeated measures data in cognitive research. J Exp Psychol Learn Mem Cogn 16:149–157. https://doi.org/10.1037/0278-7393.16.1.149
Mania K, Chalmers A (2001) The effects of levels of immersion on memory and presence in virtual environments: a reality centered approach. CyberPsychol Behav 4:247–264. https://doi.org/10.1089/109493101300117938
Merhi O, Faugloire E, Flanagan MB, Stoffregen TA (2007) Motion sickness, console video games, and head-mounted displays. Hum Factors J Hum Factors Ergon Soc 49:920–934. https://doi.org/10.1518/001872007X230262
Milleville-Pennel I, Charron C (2015) Do mental workload and presence experienced when driving a real car predispose drivers to simulator sickness? An exploratory study. Accid Anal Prev 74:192–202. https://doi.org/10.1016/j.aap.2014.10.021
Moghadam KR, Banigan C, Ragan ED (2018) Scene transitions and teleportation in virtual reality and the implications for spatial awareness and sickness. Proc IEEE Trans Vis Comput Gr. https://doi.org/10.1109/TVCG.2018.2884468
Mondellini M, Arlati S, Greci L, Ferrigno G, Sacco M (2018) Sense of presence and cybersickness while cycling in virtual environments: their contribution to subjective experience. In: De Paolis L, Bourdot P (eds) Augmented reality, virtual reality, and computer graphics. Springer, Cham, pp 3–20. https://doi.org/10.1007/978-3-319-95270-3_1
Munafo J, Diedrick M, Stoffregen TA (2017) The virtual reality head-mounted display Oculus Rift induces motion sickness and is sexist in its effects. Exp Brain Res 235:889–901. https://doi.org/10.1007/s00221-016-4846-7
Nguyen-Vo T, Riecke BE, Stuerzlinger W (2018) Simulated reference frame: A cost-effective solution to improve spatial orientation in VR. Proc IEEE Virtual Real 3D User Interfaces 2018:415–422. https://doi.org/10.1109/VR.2018.8446383
Nichols S, Haldane C, Wilson JR (2000) Measurement of presence and its consequences in virtual environments. Int J Hum Comput Stud 52:471–491. https://doi.org/10.1006/ijhc.1999.0343
Nooij SA, Pretto P, Oberfeld D, Hecht H, Bülthoff HH (2017) Vection is the main contributor to motion sickness induced by visual yaw rotation: implications for conflict and eye movement theories. PLoS One. https://doi.org/10.1371/journal.pone.0175305
Oman CM (1982) A heuristic mathematical model for the dynamics of sensory conflict and motion sickness. Acta Oto-Laryngol 392:1–44
Palmisano S, Riecke BE (2018) The search for instantaneous vection: an oscillating visual prime reduces vection onset latency. PLoS ONE. https://doi.org/10.1371/journal.pone.0195886
Palmisano SA, Bonato F, Bubka A, Folder J (2007) Vertical display oscillation effects on forward vection and simulator sickness. Aviat Space Environ Med 78:951–956. https://doi.org/10.3357/ASEM.2079.2007
Palmisano S, Kim J, Allison R, Bonato F (2011) Simulated viewpoint jitter shakes sensory conflict accounts of vection. See Perceiving 24:173–200. https://doi.org/10.1163/187847511X570817
Palmisano S, Kim J, Freeman TCA (2012) Horizontal fixation point oscillation and simulated viewpoint oscillation both increase vection in depth. J Vis 12(12):15. https://doi.org/10.1167/12.12.15
Palmisano S, Allison RS, Schira MM, Barry RJ (2015) Future challenges for vection research: definitions, functional significance, measures, and neural bases. Front Psychol 6:1–15. https://doi.org/10.3389/fpsyg.2015.00193
Palmisano S, Barry RJ, De Blasio FM, Fogarty JS (2016) Identifying objective EEG based markers of linear vection in depth. Front Psychol 7:1205. https://doi.org/10.3389/fpsyg.2016.01205
Palmisano S, Arcioni B, Stapley PJ (2017a) Predicting vection and visually induced motion sickness based on spontaneous postural activity. Exp Brain Res 236:315–329. https://doi.org/10.1007/s00221-017-5130-1
Palmisano S, Mursic R, Kim J (2017b) Vection and cybersickness generated by head-and-display motion in the Oculus Rift. Displays 46:1–8. https://doi.org/10.1016/j.displa.2016.11.001
Pedram S, Perez P, Palmisano S, Farrelly M (2018) The factors affecting the quality of learning process and outcome in virtual reality environment for safety training in the context of mining industry. Int Conf Appl Hum Factors Ergon 2018:404–411. https://doi.org/10.1007/978-3-319-94223-0_38
Ragan ED, Wood A, McMahan RP, Bowman DA (2012) Trade-offs related to travel techniques and level of display fidelity in virtual data-analysis environments. Proc Joint Virtual Real Conf ICAT/EGVE/EuroVR 2012:81–84
Read JA, Bohr I (2014) User experience while viewing stereoscopic 3D television. Ergonomics 57:1140–1153. https://doi.org/10.1080/00140139.2014.914581
Reason JT, Brand JJ (1975) Motion sickness. Academic Press, New York
Rebenitsch L, Owen C (2016) Review on cybersickness in applications and visual displays. Virtual Real 20:101–125. https://doi.org/10.1007/s10055-016-0285-9
Riccio GE, Stoffregen TA (1991) An ecological theory of motion sickness and postural instability. Ecol Psychol 3:195–240. https://doi.org/10.1207/s15326969eco0303_2
Riecke BE, Jordan JD (2015) Comparing the effectiveness of different displays in enhancing illusions of self-movement (vection). Front Psychol 6:713. https://doi.org/10.3389/fpsyg.2015.00713
Riecke BE, Schulte-Pelkum J, Avraamides MN, Heyde MVD, Bülthoff HH (2006) Cognitive factors can influence self-motion perception (vection) in virtual reality. ACM Trans Appl Percept (TAP) 3:194–216. https://doi.org/10.1145/1166087.1166091
Robillard G, Bouchard S, Fournier T, Renaud P (2003) Anxiety and presence during VR immersion: a comparative study of the reactions of phobic and non-phobic participants in therapeutic virtual environments derived from computer games. CyberPsychol Behav 6:467–476. https://doi.org/10.1089/109493103769710497
Rothbaum BO, Price M, Jovanovic T, Norrholm SD, Gerardi M, Dunlop B et al (2014) A randomized, double-blind evaluation of D-cycloserine or alprazolam combined with virtual reality exposure therapy for posttraumatic stress disorder in Iraq and Afghanistan War veterans. Am J Psychiatry 171:640–648. https://doi.org/10.1176/appi.ajp.2014.13121625
Ruddle RA (2004) The effect of environment characteristics and user interaction on levels of virtual environment sickness. Proc IEEE Virtual Real 2004:141. https://doi.org/10.1109/VR.2004.13
Ruddle RA, Volkova E, Bülthoff HH (2011) Walking improves your cognitive map in environments that are large-scale and large in extent. ACM Trans Comput Hum Interact (TOCHI) 18:10. https://doi.org/10.1145/1970378.1970384
Sargunam SP, Moghadam KR, Suhail M, Ragan ED (2017) Guided head rotation and amplified head rotation: evaluating semi-natural travel and viewing techniques in virtual reality. Proc IEEE Virtual Real 2017:19–28. https://doi.org/10.1109/VR.2017.7892227
Schubert T, Friedmann F, Regenbrecht H (2001) The experience of presence: factor analytic insights. Presence: Teleoperators & Virtual Environ 10:266–281. https://doi.org/10.1162/105474601300343603
Seay AF, Krum DM, Hodges L, Ribarsky W (2002) Simulator sickness and presence in a high field-of-view virtual environment. CHI’02 Ext Abstr Hum Factors Comput Syst:784–785. https://doi.org/10.1145/506443.506596
Skarbez R, Brooks FJ, Whitton MC (2017) A survey of presence and related concepts. ACM Comput Surv 50:96. https://doi.org/10.1145/3134301
Slater M (2009) Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philos Trans R Soc B Biol Sci 364:3549–3557. https://doi.org/10.1098/rstb.2009.0138
Slater M, Steed A (2000) A virtual presence counter. Presence: Teleoperators and Virtual Environ 9:413–434. https://doi.org/10.1162/105474600566925
Slater M, Wilbur S (1997) A framework for immersive virtual environments (FIVE): Speculations on the role of presence in virtual environments. Presence: Teleoperators & Virtual Environ 6:603–616. https://doi.org/10.1162/pres.1997.6.6.603
Smart LJ, Stoffregen TA, Bardy BG (2002) Visually induced motion sickness predicted by postural instability. Hum Factors J Hum Factors Ergon Soc 44:451–465. https://doi.org/10.1518/0018720024497745
Smart LJ, Otten EW, Strang AJ, Littman EM, Cook HE (2014) Influence of complexity and coupling of optic flow on visually induced motion sickness. Ecol Psychol 26(4):301–324. https://doi.org/10.1080/10407413.2014.958029
Souman JL, Giordano PR, Schwaiger M, Frissen I, Thümmel T, Ulbrich H, De Luca A, Bülthoff HH, Ernst MO (2011) CyberWalk: enabling unconstrained omnidirectional walking through virtual environments. ACM Trans Appl Perception 8:25. https://doi.org/10.1145/2043603.2043607
Steinicke F, Visell Y, Campos JL, Lécuyer A (2013) Human walking in virtual environments: perception, technology, and applications. Springer, Verlag
Stoffregen TA, Smart LJ (1998) Postural instability precedes motion sickness. Brain Res Bull 47:437–448. https://doi.org/10.1016/S0361-9230(98)00102-6
Stoffregen TA, Hettinger LJ, Haas MW, Roe MM, Smart LJ (2000) Postural instability and motion sickness in a fixed-base flight simulator. Hum Factors 42:458–469. https://doi.org/10.1518/001872000779698097
Stoffregen TA, Faugloire E, Yoshida K, Flanagan MB, Merhi O (2008) Motion sickness and postural sway in console video games. Hum Factors 50:322–331. https://doi.org/10.1518/001872008X250755
Stoffregen TA, Yoshida K, Villard S, Scibora L, Bardy BG (2010) Stance width influences postural stability and motion sickness. Ecol Psychol 22:169–191. https://doi.org/10.1080/10407413.2010.496645
Stoffregen TA, Chen FC, Varlet M, Alcantara C, Bardy BG (2013) Getting your sea legs. PLoS ONE. https://doi.org/10.1371/journal.pone.0066949
Stoffregen TA, Chen YC, Koslucher FC (2014) Motion control, motion sickness, and the postural dynamics of mobile devices. Expe Brain Res 232:1389–1397. https://doi-org.ezproxy.uow.edu.au/10.1007/s00221-014-3859-3
Villard SJ, Flanagan MB, Albanese GM, Stoffregen TA (2008) Postural instability and motion sickness in a virtual moving room. Hum Factors 50:332–345. https://doi.org/10.1518/001872008X250728
Vlahović S, Suznjevic M, Skorin-Kapov L (2018) Subjective Assessment of Different Locomotion Techniques in Virtual Reality Environments. In: 2018 tenth international conference on quality of multimedia experience, pp 1–3. https://doi.org/10.1109/QoMEX.2018.8463433
Webb NA, Griffin MJ (2003) Eye movement, vection, and motion sickness with foveal and peripheral vision. Aviat Space Environ Med 74:622–625
Weech S, Moon J, Troje NF (2018) Influence of bone-conducted vibration on simulator sickness in virtual reality. PLoS ONE. https://doi.org/10.1371/journal.pone.0194137
Weech S, Kenny S, Barnett-Cowan M (2019) Presence and cybersickness in virtual reality are negatively related: a review. Front Psychol 10:158. https://doi.org/10.3389/fpsyg.2019.00158
Wilson JR, Nichols S, Haldane C (1997) Presence and side effects: complementary or contradictory? Advances in human factors/ergonomics: 889–892
Witmer BG, Singer MJ (1998) Measuring presence in virtual environments: a presence questionnaire. Presence: Teleoperators and Virtual Environ 7:225–240. https://doi.org/10.1162/105474698565686
Witmer BG, Bailey JH, Knerr BW, Parsons KC (1996) Virtual spaces and real world places: transfer of route knowledge. Int J Hum Comput Stud 45:413–428. https://doi.org/10.1006/ijhc.1996.0060
Yokota Y, Aoki M, Mizuta K, Ito Y, Isu N (2005) Motion sickness susceptibility associated with visually induced postural instability and cardiac autonomic responses in healthy subjects. Acta Otolaryngol 125:280–285. https://doi.org/10.1080/00016480510003192
Zacharias GL, Young LR (1981) Influence of combined visual and vestibular cues on human perception and control of horizontal rotation. Exp Brain Res 41:159–171. https://doi.org/10.1007/BF00236605
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Clifton, J., Palmisano, S. Effects of steering locomotion and teleporting on cybersickness and presence in HMD-based virtual reality. Virtual Reality 24, 453–468 (2020). https://doi.org/10.1007/s10055-019-00407-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10055-019-00407-8