[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Role of the meridional dipole of SSTA and associated cross-equatorial flow in the tropical eastern Pacific in terminating the 2014 El Niño development

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In the boreal spring of 2014, the oceanic and atmospheric conditions were favorable for an El Niño's development. It was predicted that in 2014, a super El Niño or at least a regular El Niño with normal magnitude, would initiate. However, the growth rate of the sea surface temperature anomaly (SSTA) in the equatorial eastern Pacific suddenly declined in the boreal summer. The physical processes responsible for the termination of the 2014 El Niño were addressed in this study. We hypothesized that a meridional dipole of SSTA, characterized by a pronounced warm SSTA over the eastern North Pacific (ENP) and cold SSTA over the eastern South Pacific (ESP), played a crucial role in blocking the 2014 El Niño’s development. The observational analysis revealed that the meridional dipole of SSTA and the relevant anomalous cross-equatorial flow in the tropical eastern Pacific, induced anomalous westward (\({u^\prime }<0\)) and upwelling (\({w^\prime }>0\)) currents in the equatorial eastern Pacific, leading to negative anomalous zonal advection term (\(- {u^\prime }\partial \overline T /\partial x<0\)) and anomalous upwelling advection term (\(- {w^\prime }\partial \overline T /\partial z<0\)). Additionally, the anomalous cross-equatorial flow also induced northward meridional current anomalies that transported subtropical cold water to the equator. All the changes of the oceanic dynamic terms collectively caused negative SSTA tendency in the boreal summer, and thus killed off the budding 2014 El Niño. The idealized numerical experiments further confirmed that the 2014 El Niño’s development could be suppressed by the meridional dipole of SSTA, and both the ENP pole and ESP pole make a contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alexander MA, Vimont DJ, Chang P, Scott JD (2010) The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. J Clim 23:2885–2901

    Article  Google Scholar 

  • Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4 Quarterly. J R Meteorol Soc 139:1132–1161

    Article  Google Scholar 

  • Behringer DW, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP. In: The Pacific Ocean. Eighth symposium on integrated observing and assimilation system for atmosphere, ocean, and land surface, AMS 84th annual meeting, Washington State Convention and Trade Center, Seattle, Washington, DC, pp 11–15

  • Bellenger H, Guilyardi É, Leloup J, Lengaigne M, Vialard J (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42:1999–2018

    Article  Google Scholar 

  • Bjerknes J (1966) A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus 18:820–829

    Article  Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial pacific. Mon Weather Rev 97:163–172

    Article  Google Scholar 

  • Bond NA, Cronin MF, Freeland H, Mantua N (2015) Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys Res Lett 42:3414–3420

    Article  Google Scholar 

  • Cane MA, Zebiak SE, Dolan SC (1986) Experimental forecasts of El Niño. Nature 321:827–832

    Article  Google Scholar 

  • Chang P, Philander SG (1994) A coupled ocean-atmosphere instability of relevance to the seasonal cycle. J Atmos Sci 51:3627–3648

    Article  Google Scholar 

  • Chang P et al (2007) Pacific meridional mode and El Niño—Southern oscillation. Geophys Res Lett 34:L16608. doi:10.1029/2007GL030302

    Article  Google Scholar 

  • Chen L, Yu Y-Q (2014) Preliminary evaluations of ENSO-related cloud and water vapor feedbacks in FGOALS. In: Zhou T, Yu Y, Liu Y, Wang B (eds) Flexible global ocean–atmosphere–land system model. Springer earth system sciences. Springer, Berlin, pp 189–197. doi:10.1007/978-3-642-41801-3_23

    Google Scholar 

  • Chen D, Zebiak SE, Cane MA, Busalacchi AJ (1997) Initialization and predictability of a coupled ENSO forecast model*. Mon Weather Rev 125:773–788

    Article  Google Scholar 

  • Chen L, Yu Y, Sun D-Z (2013) Cloud and water vapor feedbacks to the El Niño warming: are they still biased in CMIP5 models? J Clim 26:4947–4961

    Article  Google Scholar 

  • Chen L, Li T, Yu Y (2015) Causes of strengthening and weakening of ENSO amplitude under global warming in four CMIP5 models*. J Clim 28:3250–3274

    Article  Google Scholar 

  • Chen L, Li T, Behera SK, Doi T (2016a) Distinctive precursory air–sea signals between regular and super El Niños. Adv Atmos Sci 33:996–100. doi:10.1007/s00376-016-5250-8

    Article  Google Scholar 

  • Chen L, Yu Y, Zheng W (2016b) Improved ENSO simulation from climate system model FGOALS-g1. 0 to FGOALS-g2. Clim Dyn 47: 2617–2634. doi:10.1007/s00382-016-2988-8

    Article  Google Scholar 

  • Chen L, Li T, Wang B, Wang L (2017a) Formation mechanism for 2015/16 Super El Niño. Sci Rep. doi:10.1038/s41598-017-02926-3

  • Chen L, Li T, Yu Y, Behera SK (2017b) A possible explanation for the divergent projection of ENSO amplitude change under global warming. Clim Dyn. doi:10.1007/s00382-017-3544-x

    Google Scholar 

  • Chiang JC, Vimont DJ (2004) Analogous pacific and atlantic meridional modes of tropical atmosphere-ocean variability*. J Clim 17:4143–4158

    Article  Google Scholar 

  • Chiew FH, Piechota TC, Dracup JA, McMahon TA (1998) El Niño/Southern oscillation and Australian rainfall, streamflow and drought: links and potential for forecasting. J Hydrol 204:138–149

    Article  Google Scholar 

  • Chiodi AM, Harrison DE (2015) Equatorial pacific easterly wind surges and the onset of La Niña Events*. J Clim 28:776–792

    Article  Google Scholar 

  • Chou C, Huang L-F, Tu J-Y, Tseng L, Hsueh Y-C (2009) El Niño impacts on precipitation in the western North Pacific-East Asian sector. J Clim 22:2039–2057

    Article  Google Scholar 

  • Dee D et al (2011) The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Di Lorenzo E, Mantua N (2016) Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat Clim Change Adv Online Publ doi:10.1038/nclimate3082

    Google Scholar 

  • Ding R, Li J (2012) Influences of ENSO teleconnection on the persistence of sea surface temperature in the tropical Indian Ocean. J Clim 25:8177–8195

    Article  Google Scholar 

  • Ding R, Li J, Tseng Y-h (2015a) The impact of South Pacific extratropical forcing on ENSO and comparisons with the North Pacific. Clim Dyn 44:2017–2034. doi:10.1007/s00382-014-2303-5

    Article  Google Scholar 

  • Ding R, Li J, Tseng Yh, Sun C, Guo Y (2015b) The Victoria mode in the North Pacific linking extratropical sea level pressure variations to ENSO. J Geophys Res 120:27–45. doi:10.1002/2014jd022221

    Google Scholar 

  • Ding R, Li J, Tseng Yh, Ruan C (2015c) Influence of the North Pacific Victoria mode on the Pacific ITCZ summer precipitation. J Geophys Res 120:964–979. doi:10.1002/2014JD022364

    Google Scholar 

  • Ding R, Li J, Tseng Y-h, Sun C, Zheng F (2016) Linking a sea level pressure anomaly dipole over North America to the central Pacific El Niño. Clim Dyn. doi:10.1007/s00382-016-3389-8

    Google Scholar 

  • Fraedrich K (1994) An ENSO impact on Europe? Tellus A 46:541–552

    Article  Google Scholar 

  • Hansen JW, Hodges AW, Jones JW (1998) ENSO Influences on agriculture in the Southeastern United States*. J Clim 11:404–411

    Article  Google Scholar 

  • Harrison DE, Vecchi GA (1997) Westerly wind events in the Tropical Pacific, 1986–95*. J Clim 10:3131–3156

    Article  Google Scholar 

  • Hartmann DL (2015) Pacific sea surface temperature and the winter of 2014. Geophys Res Lett 42:1894–1902

    Article  Google Scholar 

  • Hong LC, Jin FF (2014) A southern hemisphere booster of super El Niño. Geophys Res Lett 41:2142–2149

    Article  Google Scholar 

  • Hong C-C, Li T, Kug J-S (2008) Asymmetry of the Indian Ocean dipole. Part I: observational analysis*. J Clim 21:4834–4848

    Article  Google Scholar 

  • Hu S, Fedorov AV (2016) Exceptionally strong easterly wind burst stalling El Niño of 2014. Proc Natl Acad Sci USA 113:2005–2010

    Article  Google Scholar 

  • Jin F-F (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829

    Article  Google Scholar 

  • Jin FF, An SI (1999) Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys Res Lett 26:2989–2992

    Article  Google Scholar 

  • Levine AF, McPhaden MJ (2016) How the July 2014 easterly wind burst gave the 2015-6 El Niño a head start. Geophys Res Lett 43:6503–6510

    Article  Google Scholar 

  • Li T (1997) Phase transition of the El Niño-Southern Oscillation: A stationary SST mode. J Atmos Sci 54:2872–2887

    Article  Google Scholar 

  • Li T, Philander SGH (1996) On the annual cycle of the eastern equatorial Pacific. J Clim 9:2986–2998

    Article  Google Scholar 

  • Li T, Zhang Y, Lu E, Wang D (2002) Relative role of dynamic and thermodynamic processes in the development of the Indian Ocean dipole: an OGCM diagnosis. Geophys Res Lett 29:2110. doi:10.1029/2002GL015789

    Google Scholar 

  • Li L et al. (2013) The flexible global ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2. Adv Atmos Sci 30:543–560

    Article  Google Scholar 

  • Lin J-L (2007) The double-ITCZ problem in IPCC AR4 coupled GCMs: ocean-atmosphere feedback analysis. J Clim 20:4497–4525

    Article  Google Scholar 

  • Luo J-J, Masson S, Behera S, Shingu S, Yamagata T (2005) Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J Clim 18:4474–4497

    Article  Google Scholar 

  • Maeda S, Urabe Y, Takemura K, Yasuda T, Tanimoto Y (2016) Active role of the ITCZ and WES feedback in hampering the growth of the expected full-fledged El Niño in 2014. SOLA 12:17–21

    Article  Google Scholar 

  • McPhaden MJ (1999) Genesis and evolution of the 1997-98 El Niño. Science 283:950–954

    Article  Google Scholar 

  • McPhaden MJ (2015) Playing hide and seek with El Niño. Nat lim Change 5: 791–795

    Article  Google Scholar 

  • McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314:1740–1745

    Article  Google Scholar 

  • Menkes CE, Lengaigne M, Vialard J, Puy M, Marchesiello P, Cravatte S, Cambon G (2014) About the role of Westerly Wind Events in the possible development of an El Niño in 2014. Geophys Res Lett 41:6476–6483

    Article  Google Scholar 

  • Min Q, Su J, Zhang R, Rong X (2015) What hindered the El Niño pattern in 2014? Geophys Res Lett 42:6762–6770

    Article  Google Scholar 

  • Philander SGH (1990) El Nino, La Nina and the Southern Oscillation. Academic Press, New York, pp 293

    Google Scholar 

  • Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384

    Article  Google Scholar 

  • Rayner N et al. (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108. doi:10.1029/2002JD002670

  • Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496

    Article  Google Scholar 

  • Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Su J, Xiang B, Wang B, Li T (2014) Abrupt termination of the 2012 Pacific warming and its implication on ENSO prediction. Geophys Res Lett 41(24):9058–9064

    Article  Google Scholar 

  • Suarez MJ, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 45:3283–3287

    Article  Google Scholar 

  • Tollefson J (2014) El Niño tests forecasters. Nature 508:20–21

    Article  Google Scholar 

  • Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777

    Article  Google Scholar 

  • Tseng Y-h, Hu Z-Z, Ding R, Chen H-c (2016) An ENSO prediction approach based on ocean conditions and ocean–atmosphere coupling. Clim Dyn. doi:10.1007/s00382-016-3188-2

    Google Scholar 

  • Vecchi GA, Harrison DE (2000) Tropical Pacific Sea surface temperature anomalies, El Niño, and equatorial westerly wind events*. J Clim 13:1814–1830

    Article  Google Scholar 

  • Vimont DJ, Battisti DS, Hirst AC (2001) Footprinting: a seasonal connection between the tropics and mid-latitudes. Geophys Res Lett 28:3923–3926

    Article  Google Scholar 

  • Vimont DJ, Battisti DS, Hirst AC (2003a) The seasonal footprinting mechanism in the CSIRO general circulation models*. J Clim 16:2653–2667

    Article  Google Scholar 

  • Vimont DJ, Wallace JM, Battisti DS (2003b) The seasonal footprinting mechanism in the Pacific: implications for ENSO*. J Clim 16:2668–2675

    Article  Google Scholar 

  • Wang L, Chen L (2016) Interannual variation of convectively-coupled equatorial waves and their association with environmental factors. Dyn Atmos Oceans 76:116–126. doi:10.1016/j.dynatmoce.2016.10.004

    Article  Google Scholar 

  • Wang L, Chen L (2017a) Effect of basic state on seasonal variation of convectively coupled Rossby wave. Dyn Atmos Oceans 77:54–63. doi:10.1016/j.dynatmoce.2016.11.002

    Article  Google Scholar 

  • Wang L, Chen L (2017b) Interannual variation of the Asian-Pacific oscillation. Dyn Atmos Oceans 77:17–25. doi:10.1016/j.dynatmoce.2016.10.009

    Article  Google Scholar 

  • Wang L, Li T, Zhou T (2012) Intraseasonal SST variability and air-sea interaction over the Kuroshio extension region during Boreal summer*. J Clim 25:1619–1634

    Article  Google Scholar 

  • Wang L, Li T, Zhou T (2015) Effect of high-frequency wind on intraseasonal SST variabilities over the mid-latitude North Pacific region during boreal summer. Clim Dyn 45:2607–2617. doi:10.1007/s00382-015-2496-2

    Article  Google Scholar 

  • Ward PJ, Jongman B, Kummu M, Dettinger MD, Weiland FCS, Winsemius HC (2014) Strong influence of El Niño Southern Oscillation on flood risk around the world. Proc Natl Acad Sci USA 111:15659–15664

    Article  Google Scholar 

  • Weisberg RH, Wang C (1997) A western Pacific oscillator paradigm for the El Niño-Southern oscillation. Geophys Res Lett 24:779–782

    Article  Google Scholar 

  • Wyrtki K (1975) El Niño-the dynamic response of the equatorial Pacific ocean to atmospheric forcing. J Phys Oceanogr 5:572–584

    Article  Google Scholar 

  • Xie SP, Philander SGH (1994) A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A 46:340–350

    Article  Google Scholar 

  • Yan L, Yong-Qiang Y, Bin W, Li-Juan L, Pan-Xing W (2009) ENSO hindcast experiments using a coupled GCM. Atmos Oceanic Sci Lett 2:7–13

    Article  Google Scholar 

  • Yan L, Wang P, Yu Y, Li L, Wang B (2010) Potential predictability of sea surface temperature in a coupled ocean-atmosphere GCM. Adv Atmos Sci 27:921–936

    Article  Google Scholar 

  • Yu J-Y, Kim ST (2011) Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J Clim 24:708–720

    Article  Google Scholar 

  • Yu Y-Q, Chen L, Zhang Y (2014) ENSO and PDO in two versions of FGOALS. In: Zhou T, Yu Y, Liu Y, Wang B (eds) Flexible global ocean–atmosphere–land system model. Springer earth system sciences. Springer, Berlin, pp 107–113. doi:10.1007/978-3-642-41801-3_14

    Google Scholar 

  • Zhang L, Chang P, Ji L (2009) Linking the Pacific meridional mode to ENSO: coupled model analysis. J Clim 22:3488–3505

    Article  Google Scholar 

  • Zhang H, Clement A, Di Nezio P (2014a) The South Pacific meridional mode: a mechanism for ENSO-like variability. J Clim 27:769–783

    Article  Google Scholar 

  • Zhang H, Deser C, Clement A, Tomas R (2014b) Equatorial signatures of the Pacific Meridional modes: dependence on mean climate state. Geophys Res Lett 41:568–574. doi:10.1002/2013GL058842

    Article  Google Scholar 

  • Zhu J, Shukla J (2013) The role of air–sea coupling in seasonal prediction of Asia–Pacific summer monsoon rainfall. J Clim 26:5689–5697

    Article  Google Scholar 

  • Zhu J et al (2014) Salinity anomaly as a trigger for ENSO events. Sci Rep 4:6821. doi:10.1038/srep06821

    Article  Google Scholar 

  • Zhu J, Kumar A, Huang B, Balmaseda MA, Hu Z-Z, Marx L, Kinter III JL (2016) The role of off-equatorial surface temperature anomalies in the 2014 El Niño prediction. Sci Rep 6:19677 doi:10.1038/srep19677

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the editor and three anonymous reviewers for their insightful suggestions and comments. The data for this paper are from Met Office Hadley Centre sea ice and SST data sets, ECMWF ERA-Interim atmospheric fields and NCEP GODAS oceanic fields. CCH was supported by MOST-104-2111-M-845-002, and CTC was supported by MOST-105-2119-M-003-004 and MOST-104-2621-M-865-001. This work was also supported by NSF AGS-1565653, NSFC project 41630423, NSFC Grant 41376002/41606011/41530426/41606033, CAS Strategic Priority Project XDA11010105, and JAMSTEC JIJI Theme1 project. This is SOEST contribution number 10010 and IPRC contribution number 1252.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3966 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, YK., Chen, L., Hong, CC. et al. Role of the meridional dipole of SSTA and associated cross-equatorial flow in the tropical eastern Pacific in terminating the 2014 El Niño development. Clim Dyn 50, 1625–1638 (2018). https://doi.org/10.1007/s00382-017-3710-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3710-1

Keywords

Navigation