[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Potential predictability of sea surface temperature in a coupled ocean-atmosphere GCM

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Using the Flexible Global Ocean-Atmosphere-Land System model (FGOALS) version g1.11, a group of seasonal hindcasting experiments were carried out. In order to investigate the potential predictability of sea surface temperature (SST), singular value decomposition (SVD) analyses were applied to extract dominant coupled modes between observed and predicated SST from the hindcasting experiments in this study. The fields discussed are sea surface temperature anomalies over the tropical Pacific basin (20°S-20°N, 120°E-80°W), respectively starting in four seasons from 1982 to 2005. On the basis of SVD analysis, the simulated pattern was replaced with the corresponding observed pattern to reconstruct SST anomaly fields to improve the ability of the simulation. The predictive skill, anomaly correlation coefficients (ACC), after systematic error correction using the first five modes was regarded as potential predictability. Results showed that: 1) the statistical postprocessing approach was effective for systematic error correction; 2) model error sources mainly arose from mode 2 extracted from the SVD analysis—that is, during the transition phase of ENSO, the model encountered the spring predictability barrier; and 3) potential predictability (upper limits of predictability) could be high over most of the tropical Pacific basin, including the tropical western Pacific and an extra 10-degrees region of the mid and eastern Pacific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnett, T. P., and R. Preisendorfer, 1987: Origins and levels of monthly and seasonal forecast skill for United States surface air temperatures determined by canonical correlation analysis. Mon. Wea. Rev., 115, 1825–1850.

    Article  Google Scholar 

  • Bettge, T. W., J. W. Weatherly, W. M. Washington, D. Pollard, B. P. Briegleb, and W. G. Strand, Jr, 1996: The CSM Sea Ice Model. NCAR Technical Note NCAR/TN-425+STR, National Center for Atmospheric Research, Boulder, Colorado, 27pp.

  • Bonan, G. B., K. W. Oleson, M. Vertenstein, S. Levis, X. Zeng, Y. Dai, R. E. Dickinson, and Z.-L. Yang, 2002: The land surface climatology of the community land model coupled to the NCAR community climate model. J. Climate, 15, 3123–3149.

    Article  Google Scholar 

  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541–560.

    Article  Google Scholar 

  • Chen, D., S. E. Zebiak, M. A. Cane, and A. J. Busalacchi, 1997: Initialization and predictability of a coupled ENSO forecast model. Mon. Wea. Rev., 125, 773–788.

    Article  Google Scholar 

  • Collins, W. D., and Coauthors, 2003: Description of the NCAR Community Atmosphere Model (CAM2). NCAR Technical Notes, National Center for Atmospheric Research, Boulder, Colorado, 189pp.

  • DeWitt, D. G., 2005: Retrospective forecasts of interannual sea surface temperature anomalies from 1982 to present using a directly coupled atmospheric-ocean general circulation model. Mon. Wea. Rev., 133, 2972–2995.

    Article  Google Scholar 

  • Duan, A. M., and H. B. Wu, 1998: POP Analysis of Global Tropical SSTA. Journal of Nanjing Institute of Meteorology, 21, 61–69. (in Chinese)

    Google Scholar 

  • Feddersen, H., A. Navarra, and M. N. Ward, 1999: Reduction of model systematic error by statistical correction for dynamical seasonal predictions. J. Climate, 12, 1974–1989.

    Article  Google Scholar 

  • Graham, N. E., P. Barnett, R. Wilde, M. Ponater, and S. Schubert, 1994: On the roles of tropical and midlatitude SSTs in forcing interannual to interdecadal variability in the winter Northern Hemisphere circulation. J. Climate, 7, 1416–1441.

    Article  Google Scholar 

  • Guilyardi, E., 2006: El Niño-mean state—Seasonal cycle interactions in a multimodel ensemble. Climate Dyn., 26, 329–348.

    Article  Google Scholar 

  • Hasselmann, K., 1988: PIPs and POPs: The reduction of complex dynamical systems using principal interaction and oscillation patterns. J. Geophys. Res., 93, 11051–11021.

    Article  Google Scholar 

  • Jin, E. K., and Coauthors, 2008: Current status of ENSO prediction skill in coupled ocean-atmosphere models. Climate Dyn., 31, 647–664.

    Article  Google Scholar 

  • Kang, I. S., and J. Y. Lee, 2004: Potential predictability of summer mean precipitation in a dynamical seasonal prediction system with systematic error correction. J. Climate, 17, 834–844.

    Article  Google Scholar 

  • Li, L., B. Wang, Y. Wang, and H. Wan, 2007: Improvements in climate simulation with modifications to the Tiedtke convective parameterization in the gridpoint atmospheric model of IAP LASG (GAMIL). Adv. Atmos. Sci., 24, 323–335, doi: 10.1007/s00376-007-0323-3.

    Article  Google Scholar 

  • Liu, H., X. Zhang, W. Li, Y. Yu, and R. Yu, 2004: An eddy-permitting oceanic general circulation model and its preliminary evaluation. Adv. Atmos. Sci., 21, 675–690.

    Article  Google Scholar 

  • Luo, J.-J., S. Masson, S. Behera, S. Shingu, and T. Yamagata, 2005: Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts, J. Climate, 18, 4474–4497.

    Article  Google Scholar 

  • Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over the tropical Pacific in coupled ocean-atmosphere general circulation models. Mon. Wea. Rev., 123, 2825–2838.

    Article  Google Scholar 

  • Moore, A. M., and R. Kleeman, 1996: The dynamics of error growth and predictability in a coupled model of ENSO. Quart. J. Roy. Meteor. Soc., 122, 1405–1446.

    Article  Google Scholar 

  • Oberhuber, J. M., E. Roeckner, M. Christoph, M. Esch, and M. Latif, 1998: Predicting the’ 97 El Niñno event with a global climate model. Geophys. Res. Lett., 25, 2273–2276.

    Article  Google Scholar 

  • Palmer, T. N., and Coauthors, 2004: Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER). Bull. Amer. Meteor. Soc., 85, 853–872.

    Article  Google Scholar 

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E.C. Kent, and A. Kaplan, 2006: UKMO-GISST/MOHMATN4/MOHSST-6-Global Ice coverage and SST (1856–2006). UK Meteorological Office. [Available online from http://badc.nerc. ac.uk/data/gisst/]

  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609–1625.

    Article  Google Scholar 

  • Rosati, A., K. Miyakoda, and R. Gudgel, 1997: The impact of ocean initial conditions on ENSO forecasting with a coupled model. Mon. Wea. Rev., 125, 754–772.

    Article  Google Scholar 

  • Schneider, E. K., B. Huang, Z. Zhu, D. G. DeWitt, J. L. Kinter III, B. P. Kirtman, and J. Shukla, 1999: Ocean data assimilation, initialization, and predictions of ENSO with a coupled GCM. Mon. Wea. Rev., 127, 1187–1207.

    Article  Google Scholar 

  • von Storch, H., T. Bruns, I. F. Bruns, and K. Hasselmann, 1988: Principal oscillation pattern analysis of the 30- to 60-day oscillation in general circulation model equatorial troposphere. J. Geophys. Res., 93, 11022–11036.

    Article  Google Scholar 

  • Wang, B., H. Wan, Z. Ji, X. Zhang, R. Yu, Y. Yu, and H. Liu, 2004: Design of a new dynamical core for global atmospheric models based on some efficient numerical methods. Science in China, 47, 4–21.

    Article  Google Scholar 

  • Wang, B., and Coauthors, 2009: Advance and prospectus of seasonal prediction: Assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Climate Dyn., 33, 93–117.

    Article  Google Scholar 

  • Ward, M. N., and A. Navarra, 1997: Pattern analysis of SST-forced variability in ensemble GCM simulations: Examples over Europe and the tropical Pacific. J. Climate, 10, 2210–2220.

    Article  Google Scholar 

  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 825–877.

    Article  Google Scholar 

  • Weiss, J. P., and J. B. Weiss, 1999: Quantifying persistence in ENSO. J. Atmos. Sci., 56, 2737–2760.

    Article  Google Scholar 

  • Xu, J. S., 1992: On the relationship between the stratospheric quasi-biennial oscillation and the tropospheric southern oscillation. J. Atmos. Sci., 49, 725–734.

    Article  Google Scholar 

  • Xue, Y., M. A. Cane, S. E. Zebiak, and M. B. Blumenthal, 1994: On the prediction of ENSO: A study with a low order Markov model. Tellus, 46A, 512–528.

    Google Scholar 

  • Yan, L., Y. Q. Yu, B. Wang, L. J. Li, and P. X. Wang, 2009: ENSO Hindcast experiments using a coupled GCM. Atmospheric and Oceanic Science Letters, 2, 1–7.

    Google Scholar 

  • Yu, Y., R. Yu, X. Zhang, and H. Liu, 2002: A flexible coupled ocean-atmosphere general circulation model. Adv. Atmos. Sci., 19, 169–190.

    Article  Google Scholar 

  • Yu, Y., X. Zhang, and Y. Guo, 2004: Global coupled ocean-atmosphere general circulation models in LASG/IAP. Adv. Atmos. Sci., 21, 444–455.

    Article  Google Scholar 

  • Yu, Y. Q., W. P. Zheng, X. H. Zhang, and H. L. Liu, 2007: LASG Coupled Climate System Model FGCM-1.0. Chinese Journal of Geophysics, 50, 1677–1687. (in Chinese)

    Google Scholar 

  • Zhang, X. H., Y. Q. Yu, and H. L. Liu, 2003: The development and application of the oceanic general circulation models Part I. The global oceanic general circulation models. Chinese J. Atmos. Sci., 27, 607–617. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqiang Yu  (俞永强).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, L., Wang, P., Yu, Y. et al. Potential predictability of sea surface temperature in a coupled ocean-atmosphere GCM. Adv. Atmos. Sci. 27, 921–936 (2010). https://doi.org/10.1007/s00376-009-9062-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-009-9062-y

Key words

Navigation