[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Noise-tolerant texture feature extraction through directional thresholded local binary pattern

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Local binary pattern (LBP) is a multi-applicable texture descriptor applied in machine vision. Despite its outstanding abilities in revealing textural properties of image, it is sensitive to noise, due to its thresholding mechanism. To make LBP robust against noise, a directional thresholded LBP (DTLBP) is developed in this article which applies the directional neighboring pixels average values for thresholding. Applying this type of thresholding in addition to reducing noise, due to using the information of neighboring pixels with bigger radii, increases efficiency in extracting features. The DTLBP is able to be combined with other descriptors like completed LBP (CLBP) and local ternary pattern (LTP) which improves their functionality against noise. To evaluate the functionality of DTLBP, four known datasets including Outex (TC10), CUReT, UIUC and UMD are tested. Numerous and extensive experiments on these datasets with different kinds of noises indicate this newly developed descriptor’s efficiency, with or without incremental white Gaussian and Gaussian blur noises. The proposed descriptor is compared with its available state of the art counterparts. The results show that the combination of DTLBP with CLBP descriptors provide the best classification accuracy in the experiments, which confirms the efficiency and robustness of the proposed descriptor when extracting features from noisy and raw images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ahmed, F., Hossain, E.: Automated facial expression recognition using gradient-based ternary texture patterns. Chin. J. Eng. (2013). https://doi.org/10.1155/2013/831747

    Article  Google Scholar 

  2. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006)

    Article  MATH  Google Scholar 

  3. Bashar, F., Khan, A., Ahmed, F., Kabir, M.H.: Robust facial expression recognition based on median ternary pattern (MTP). In: International Conference on Electrical Information and Communication Technology (EICT), pp. 1–5. IEEE (2014)

  4. Brahnam, S., Jain, L.C., Nanni, L., Lumini, A., et al.: Local Binary Patterns: New Variants and Applications. Springer, Berlin (2016)

    MATH  Google Scholar 

  5. Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover Publications, New York (1966)

    Google Scholar 

  6. Bruna, J., Mallat, S.: Invariant scattering convolution networks. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1872–1886 (2013)

    Article  Google Scholar 

  7. Chan, T.H., Jia, K., Gao, S., Lu, J., Zeng, Z., Ma, Y.: PCANet: a simple deep learning baseline for image classification? IEEE Trans. Image Process. 24(12), 5017–5032 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dana, K.J., Van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real-world surfaces. ACM Trans. Graph. (TOG) 18(1), 1–34 (1999)

    Article  Google Scholar 

  9. Doshi, N.P., Schaefer, G.: A comprehensive benchmark of local binary pattern algorithms for texture retrieval. In: 21st International Conference on Pattern Recognition (ICPR), pp. 2760–2763. IEEE (2012)

  10. Fernández, A., Álvarez, M.X., Bianconi, F.: Texture description through histograms of equivalent patterns. J. Math. Imaging Vis. 45(1), 76–102 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo, Z., Wang, X., Zhou, J., You, J.: Robust texture image representation by scale selective local binary patterns. IEEE Trans. Image Process. 25(2), 687–699 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hafiane, A., Seetharaman, G., Zavidovique, B.: Median binary pattern for textures classification. In: International Conference Image Analysis and Recognition, pp. 387–398. Springer (2007)

  14. Heikkila, M., Pietikainen, M.: A texture-based method for modeling the background and detecting moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 657–662 (2006)

    Article  Google Scholar 

  15. Heikkilä, M., Pietikäinen, M., Schmid, C.: Description of interest regions with center-symmetric local binary patterns. In: Computer Vision, Graphics and Image Processing, pp. 58–69. Springer (2006)

  16. Heikkilä, M., Pietikäinen, M., Schmid, C.: Description of interest regions with local binary patterns. Pattern Recognit. 42(3), 425–436 (2009)

    Article  MATH  Google Scholar 

  17. Jin, H., Liu, Q., Lu, H., Tong, X.: Face detection using improved LBP under Bayesian framework. In: Third International Conference on Image and Graphics (ICIG’04), pp. 306–309. IEEE (2004)

  18. Juefei-Xu, F., Boddeti, V.N., Savvides, M.: Local binary convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4284–4293. IEEE (2017)

  19. Kandaswamy, U., Schuckers, S.A., Adjeroh, D.: Comparison of texture analysis schemes under nonideal conditions. IEEE Trans. Image Process. 20(8), 2260–2275 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

  21. Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local affine regions. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1265–1278 (2005)

    Article  Google Scholar 

  22. Li, C., Zhou, W., Yuan, S.: Iris recognition based on a novel variation of local binary pattern. Vis. Comput. 31(10), 1419–1429 (2015)

    Article  Google Scholar 

  23. Lin, X., Zhao, C., Pan, W.: Towards accurate binary convolutional neural network. In: Advances in Neural Information Processing Systems, pp. 345–353 (2017)

  24. Liu, L., Chen, J., Fieguth, P., Zhao, G., Chellappa, R., Pietikainen, M.: From BoW to CNN: two decades of texture representation for texture classification. Int. J. Comput. Vis. 127(1), 74–109 (2019)

    Article  Google Scholar 

  25. Liu, L., Fieguth, P., Guo, Y., Wang, X., Pietikäinen, M.: Local binary features for texture classification: taxonomy and experimental study. Pattern Recognit. 62, 135–160 (2017)

    Article  Google Scholar 

  26. Liu, L., Lao, S., Fieguth, P.W., Guo, Y., Wang, X., Pietikäinen, M.: Median robust extended local binary pattern for texture classification. IEEE Trans. Image Process. 25(3), 1368–1381 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mallikarjuna, P., Fritz, M., Targhi, A.T., Hayman, E., Caputo, B., Eklundh, J.: The kth-tips and kth-tips2 databases (2006)

  28. Nanni, L., Brahnam, S., Lumini, A.: A local approach based on a local binary patterns variant texture descriptor for classifying pain states. Expert Syst. Appl. 37(12), 7888–7894 (2010)

    Article  Google Scholar 

  29. Nanni, L., Lumini, A., Brahnam, S.: Local binary patterns variants as texture descriptors for medical image analysis. Artif. Intell. Med. 49(2), 117–125 (2010)

    Article  MATH  Google Scholar 

  30. Ojala, T., Maenpaa, T., Pietikainen, M., Viertola, J., Kyllonen, J., Huovinen, S.: Outex-new framework for empirical evaluation of texture analysis algorithms. In: Proceedings of 16th International Conference on Pattern Recognition, vol. 1, pp. 701–706. IEEE (2002)

  31. Ojala, T., Pietikainen, M., Kyllonen, J.: Gray level cooccurrence histograms via learning vector quantization. Proc. Scand. Conf. Image Anal. 1, 103–108 (1999)

    Google Scholar 

  32. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  33. Pietikäinen, M., Hadid, A., Zhao, G., Ahonen, T.: Computer Vision Using Local Binary Patterns, vol. 40. Springer, Berlin (2011)

    Book  Google Scholar 

  34. Pietikäinen, M., Zhao, G.: Two decades of local binary patterns: a survey. In: Advances in Independent Component Analysis and Learning Machines, pp. 175–210. Elsevier (2015)

  35. Rivera, A.R., Castillo, J.R., Chae, O.: Local directional texture pattern image descriptor. Pattern Recognit. Lett. 51, 94–100 (2015)

    Article  Google Scholar 

  36. Rivera, A.R., Castillo, J.R., Chae, O.O.: Local directional number pattern for face analysis: face and expression recognition. IEEE Trans. Image Process. 22(5), 1740–1752 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ryu, J., Hong, S., Yang, H.S.: Sorted consecutive local binary pattern for texture classification. IEEE Trans. Image Process. 24(7), 2254–2265 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shang, J., Chen, C., Pei, X., Liang, H., Tang, H., Sarem, M.: A novel local derivative quantized binary pattern for object recognition. Vis. Comput. 33(2), 221–233 (2017)

    Article  Google Scholar 

  39. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  40. Song, K., Yan, Y., Zhao, Y., Liu, C.: Adjacent evaluation of local binary pattern for texture classification. J. Vis. Commun. Image Represent. 33, 323–339 (2015)

    Article  Google Scholar 

  41. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9 (2015)

  42. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Trefnỳ, J., Matas, J.: Extended set of local binary patterns for rapid object detection. In: Computer Vision Winter Workshop, pp. 1–7 (2010)

  44. Turan, C., Lam, K.M.: Histogram-based local descriptors for facial expression recognition (FER): a comprehensive study. J. Vis. Commun. Image Represent. 55, 331–341 (2018)

    Article  Google Scholar 

  45. Varma, M., Zisserman, A.: A statistical approach to material classification using image patch exemplars. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 2032–2047 (2009)

    Article  Google Scholar 

  46. Xu, Y., Yang, X., Ling, H., Ji, H.: A new texture descriptor using multifractal analysis in multi-orientation wavelet pyramid. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 161–168. IEEE (2010)

  47. Zhang, J., Marszałek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: a comprehensive study. Int. J. Comput. Vis. 73(2), 213–238 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolah Chalechale.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabatabaei, S.M., Chalechale, A. Noise-tolerant texture feature extraction through directional thresholded local binary pattern. Vis Comput 36, 967–987 (2020). https://doi.org/10.1007/s00371-019-01704-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-019-01704-8

Keywords

Navigation