Abstract
This paper presents a simple, efficient, yet robust approach, named joint-scale local binary pattern (JLBP), for texture classification. In the proposed approach, the joint-scale strategy is developed firstly, and the neighborhoods of different scales are fused together by a simple arithmetic operation. And then, the descriptor is extracted from the mutual integration of the local patches based on the conventional local binary pattern (LBP). The proposed scheme can not only describe the micro-textures of a local structure, but also the macro-textures of a larger area because of the joint of multiple scales. Further, motivated by the completed local binary pattern (CLBP) scheme, the completed JLBP (CJLBP) is presented to enhance its power. The proposed descriptor is evaluated in relation to other recent LBP-based patterns and non-LBP methods on popular benchmark texture databases, Outex, CURet and UIUC. Generally, the experimental results show that the new method performs better than the state-of-the-art techniques.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Brahnam, S., Jain, L.C., Nanni, L., Lumini, A.: Local binary patterns: new variants and applications. Springer, NY (2014)
Chen, J., Kellokumpu, V., Zhao, G., Pietikäinen, M.: Rlbp: Robust local binary pattern. In: Proc. the British Machine Vision Conference (BMVC 2013), Bristol, UK (2013)
Dana, K.J., Van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real-world surfaces. ACM Trans. Graph. (TOG) 18(1), 1–34 (1999)
Davarzani, R., Mozaffari, S., Yaghmaie, K.: Scale- and rotation-invariant texture description with improved local binary pattern features. Signal Process. 111, 274–293 (2015)
Guo, Z., Li, Q., Zhang, L., You, J., Zhang, D., Liu, W.: Is local dominant orientation necessary for the classification of rotation invariant texture? Neurocomputing 116, 182–191 (2013)
Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)
Hafiane, A., Palaniappan, K., Seetharaman, G.: Joint adaptive median binary patterns for texture classification. Pattern Recogn. (2015)
Han, J., Ma, K.K.: Rotation-invariant and scale-invariant gabor features for texture image retrieval. Image Vision Comput. 25(9), 1474–1481 (2007)
Heikkilä, M., Pietikäinen, M., Schmid, C.: Description of interest regions with local binary patterns. Pattern Recognit. 42(3), 425–436 (2009)
Hussain, S.U., Napoleon, T., Jurie, F.: Face recognition using local quantized patterns. Br. Mach. Vis. Conf., pp 99.1–99.11 (2012)
Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local affine regions. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1265–1278 (2005)
Li, C., Li, J., Gao, D., Fu, B.: Rapid-transform based rotation invariant descriptor for texture classification under non-ideal conditions. Pattern Recognit. 47(1), 313–325 (2014)
Li, C., Zhou, W., Yuan, S.: Iris recognition based on a novel variation of local binary pattern. Vis. Comput. 31(4), 1419–1429 (2015)
Li, Z., Liu, G., Yang, Y., You, J.: Scale-and rotation-invariant local binary pattern using scale-adaptive texton and subuniform-based circular shift. IEEE Trans. Image Process. 21(4), 2130–2140 (2012)
Liao, S., Chung, A.C.: Face recognition by using elongated local binary patterns with average maximum distance gradient magnitude. In: Computer Vision-ACCV 2007, pp. 672–679. Springer (2007)
Liao, S., Zhu, X., Lei, Z., Zhang, L., Li, S.Z.: Learning multi-scale block local binary patterns for face recognition. In: Advances in Biometrics, pp. 828–837. Springer (2007)
Liu, L., Long, Y., Fieguth, P.W., Lao, S., Zhao, G.: Brint: Binary rotation invariant and noise tolerant texture classification. IEEE Trans. Image Process. 23(7), 3071–3084 (2014)
Maani, R., Kalra, S., Yang, Y.H.: Rotation invariant local frequency descriptors for texture classification. IEEE Trans. Image Process. 22(6), 2409–2419 (2013)
Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 18(8), 837–842 (1996)
Murala, S., Wu, Q.J.: Local mesh patterns versus local binary patterns: biomedical image indexing and retrieval. IEEE J. Biomed. Health Inf. 18(3), 929–938 (2014)
Nguyen, T.N., Miyata, K.: Multi-scale region perpendicular local binary pattern: an effective feature for interest region description. Vis. Comput. 31(4), 391–406 (2015)
Ojala, T., Maenpaa, T., Pietikäinen, M., Viertola, J., Kyllonen, J., Huovinen, S.: Outex-new framework for empirical evaluation of texture analysis algorithms. In: Proc. International Conference on Pattern Recognition, vol. 1, pp. 701–706. IEEE (2002)
Ojala, T., Pietikäinen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)
Qi, X., Xiao, R., Li, C.G., Qiao, Y., Guo, J., Tang, X.: Pairwise rotation invariant co-occurrence local binary pattern. IEEE Trans. Pattern Anal. Mach. Intell. 11, 2199–2213 (2014)
Qian, X., Hua, X.S., Chen, P., Ke, L.: Plbp: An effective local binary patterns texture descriptor with pyramid representation. Pattern Recognit. 44(10), 2502–2515 (2011)
Ren, J., Jiang, X., Yuan, J.: Noise-resistant local binary pattern with an embedded error-correction mechanism. IEEE Trans. Image Process. 22(10), 4049–4060 (2013)
Ren, J., Jiang, X., Yuan, J.: Learning lbp structure by maximizing the conditional mutual information. Pattern Recognit. 48(10), 3180–3190 (2015)
Ren, J., Jiang, X., Yuan, J., Wang, G.: Optimizing lbp structure for visual recognition using binary quadratic programming. Signal Process. Lett. IEEE 21(11), 1346–1350 (2014)
Shrivastava, N., Tyagi, V.: An effective scheme for image texture classification based on binary local structure pattern. Vis. Comput. 30(11), 1223–1232 (2014)
Shu, Y., Wang, T., Shao, G., Liu, F., Feng, Q.: Robust differential circle patterns based on fuzzy membership-pooling: A novel local image descriptor. Neurocomputing 144, 378–390 (2014)
Song, T., Li, H., Meng, F., Wu, Q., Luo, B., Zeng, B., Gabbouj, M.: Noise-robust texture description using local contrast patterns via global measures. Signal Process. Lett. IEEE 21(1), 93–96 (2014)
Sun, J., Fan, G., Yu, L., Wu, X.: Concave-convex local binary features for automatic target recognition in infrared imagery. EURASIP J. Image Video Process. 2014(1), 1–13 (2014)
Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)
Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. Int. J. Comput. Vis. 62(1–2), 61–81 (2005)
Varma, M., Zisserman, A.: A statistical approach to material classification using image patch exemplars. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 2032–2047 (2009)
Verma, M., Raman, B., Murala, S.: Local extrema co-occurrence pattern for color and texture image retrieval. Neurocomputing (2015)
Wolf, L., Hassner, T., Taigman, Y., et al.: Descriptor based methods in the wild. In: Proc. Workshop on Faces in’Real-Life’Images: Detection, Alignment, and Recognition (2008)
Wu, X., Sun, J., Fan, G., Wang, Z.: Improved local ternary patterns for automatic target recognition in infrared imagery. Sensors 15(3), 6399–6418 (2015)
Zhao, Y., Huang, D., Jia, W.: Completed local binary count for rotation invariant texture classification. IEEE Trans. Image Process. 21(10), 4492–4497 (2012)
Zhao, Y., Jia, W., Hu, R.X., Min, H.: Completed robust local binary pattern for texture classification. Neurocomputing 106, 68–76 (2013)
Zhu, C., Bichot, C.E., Chen, L.: Image region description using orthogonal combination of local binary patterns enhanced with color information. Pattern Recognit. 46(7), 1949–1963 (2013)
Acknowledgments
The authors would like to thank the anonymous reviewers for their valuable comments and suggestions that we refer to in this paper. We would also like to thank Dr. Guo and Dr. Zhao as well as the MVG group for sharing their codes. This work is sponsored by the NSFC (No. 61572173) and the basic and advanced technology research project of Henan Province (Nos. 132300410462, 112300410281), the research team of HPU (No. T2014-3).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wu, X., Sun, J. Joint-scale LBP: a new feature descriptor for texture classification. Vis Comput 33, 317–329 (2017). https://doi.org/10.1007/s00371-015-1202-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-015-1202-z